Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (10): 1021-1029.DOI: 10.15541/jim20190043
• Review • Next Articles
Received:
2019-01-24
Revised:
2019-05-07
Published:
2019-09-23
Online:
2019-05-29
CLC Number:
GUO Rong-Nan, HAN Wei-Qiang. Effects of Structure and Properties of Polar Polymeric Binders on Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2019, 34(10): 1021-1029.
Binder | Application | Adhesion | Specific capacity/(mAh?g-1) | Ref. |
---|---|---|---|---|
Linear polymer | ||||
PAL-NaPAA | Si | 5.0 N/cm | 1914 (100 cycles, 0.84 A/g) | [17] |
Carboxymethyl fenugreek gum | Si | — | 1790 (200 cycles, 1 A/g) | [18] |
CCS | S | ~4 N | ~600 (400 cycles, 0.5C) | [19] |
PF-COONa | Sn Si | — 6.6 N | 518 (500 cycles, 0.2 A/g) 2806 (100 cycles, 0.42 mA/g, 0.19 mg/cm2) | [20-21] |
Cross-linked polymer | ||||
c-PEO-PEDOT:PSS/PEI | Si | ~0.55 N/mm2 | 2027 (500 cycles, 1.0 A/g) | [22] |
c-PAM-0.001 | Si | 13.98 N | 2834 (100 cycles, 0.1C) | [23] |
PEI-ER | S | — | 1025 (500 cycles, 0.5C) | [24] |
Cross-linked corn starch | Si | 31.2 gf/cm | 2106 (200 cycles, 0.5C) | [25] |
SHP-PEG | Si | ~3.2 N/cm | ~1300 (150 cycles, 0.5C) | [26] |
Table 1 Applications of polar polymeric binders in LIBs
Binder | Application | Adhesion | Specific capacity/(mAh?g-1) | Ref. |
---|---|---|---|---|
Linear polymer | ||||
PAL-NaPAA | Si | 5.0 N/cm | 1914 (100 cycles, 0.84 A/g) | [17] |
Carboxymethyl fenugreek gum | Si | — | 1790 (200 cycles, 1 A/g) | [18] |
CCS | S | ~4 N | ~600 (400 cycles, 0.5C) | [19] |
PF-COONa | Sn Si | — 6.6 N | 518 (500 cycles, 0.2 A/g) 2806 (100 cycles, 0.42 mA/g, 0.19 mg/cm2) | [20-21] |
Cross-linked polymer | ||||
c-PEO-PEDOT:PSS/PEI | Si | ~0.55 N/mm2 | 2027 (500 cycles, 1.0 A/g) | [22] |
c-PAM-0.001 | Si | 13.98 N | 2834 (100 cycles, 0.1C) | [23] |
PEI-ER | S | — | 1025 (500 cycles, 0.5C) | [24] |
Cross-linked corn starch | Si | 31.2 gf/cm | 2106 (200 cycles, 0.5C) | [25] |
SHP-PEG | Si | ~3.2 N/cm | ~1300 (150 cycles, 0.5C) | [26] |
Fig. 6 (a) Scheme for the cross-linked binder of PNA-NaPAA-g-CMC, (b) tensile tests of different binders impregnated with electrolyte and (c) cycling performances of Si electrodes with different binders[47]
[1] | HE W, TIAN H, ZHANG S , et al. Scalable synjournal of Si/C anode enhanced by FeSix nanoparticles from low-cost ferrosilicon for lithium-ion batteries.[J]. Power Sources, 2017,353:270-276. |
[2] | CHEN Y, LIU L, XIONG J , et al. Porous Si nanowires from heap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv. Funct. Mater., 2015,25(43):6701-6709. |
[3] | PARK M H, KIM M G, JOO J , et al. Silicon nanotube battery anodes. Nano Lett., 2009,9(11):3844-3847. |
[4] | LIU Y, TAI Z, ZHOU T , et al. An all-integrated anode via interlinked chemical bonding between double-shelled-yolk- structured silicon and binder for lithium-ion batteries. Adv. Mater., 2017, 29(44): 1703028-1-11. |
[5] | AKHTAR N, SHAO H, AI F , et al. Gelatin-polyethylenimine composite as a functional binder for highly stable lithium-sulfur batteries. Electrochim. Acta, 2018,282:758-766. |
[6] | HE J, ZHANG L . Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode. J. Alloy. Compound, 2018,763:228-240. |
[7] | LING M, ZHANG L, ZHENG T , et al. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy, 2017,38:82-90. |
[8] | CHOI S, KWON T W, COSKUN A , et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science, 2017,357(6348):279-283. |
[9] | ZHAO X Y, YIM C H, DU N Y , et al. Crosslinked chitosan networks as binders for silicon/graphite composite electrodes in Li-ion batteries.[J]. Electrochem. Soc., 2018,165(5):A1110-A1121. |
[10] | HU S, CAI Z, HUANG T , et al. A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces, 2019,11(4):4311-4317. |
[11] | DROFENIK J, GABERSCEK M, DOMINKO R , et al. Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study. Electrochim. Acta, 2003,48(7):883-889. |
[12] | ZHANG R, YANG X, ZHANG D , et al. Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries.[J]. Power Sources, 2015,285:227-234. |
[13] | MIN K, RAMMOHAN A R, LEE S H , et al. Grafting functional groups in polymeric binder toward enhancing structural integrity of LixSiO2 anode during electrochemical cycling. J. Phys. Chem. C, 2018,122(30):17190-17198. |
[14] | YOO J K, JEON J, KANG K , et al. Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries. Electron. Mater. Lett., 2017,13(2):136-141. |
[15] | JIAO Y, CHEN W, LEI T , et al. A Novel polar copolymer design as a multi-functional binder for strong affinity of polysulfides in lithium-sulfur batteries.Nanoscale Res. Lett., 2017, 12: 195-1-8. |
[16] | HOCHGATTERER N S, SCHWEIGER M R, KOLLER S , et al. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem. Solid State Lett., 2008,11(5):A76-A80. |
[17] | LUO C, DU L, WU W , et al. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries. ACS Sustain. Chem. Eng., 2018,6(10):12621-12629. |
[18] | QIU L W, SHEN Y D, FAN H B , et al. Carboxymethyl fenugreek gum: rheological characterization and as a novel binder for silicon anode of lithium-ion batteries. Int.[J]. Biol. Macromol., 2018,115:672-679. |
[19] | YI H, LAN T, YANG Y , et al. Aqueous-processable polymer binder with strong mechanical and polysulfide-trapping properties for high performance of lithium-sulfur batteries. J. Mater. Chem. A, 2018,6(38):18660-18668. |
[20] | ZHAO Y, YANG L Y, LIU D , et al. A conductive binder for high-performance Sn electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces, 2018,10(2):1672-1677. |
[21] | LIU D, ZHAO Y, TAN R , et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries. Nano Energy, 2017,36:206-212. |
[22] | ZENG W, WANG L, PENG X , et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater., 2018, 8(11): 1702314-1-8. |
[23] | ZHU X, ZHANG F, ZHANG L , et al. A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage. Adv. Funct. Mater., 2018, 28(11): 1705015-1-12. |
[24] | YAN L, GAO X, WAHID-PEDRO F , et al. A novel epoxy resin-based cathode binder for low cost, long cycling life, and high-energy lithium-sulfur batteries. J. Mater. Chem. A, 2018,6(29):14315-14323. |
[25] | ROHAN R, KUO T C, CHIOU C Y , et al. Low-cost and sustainable corn starch as a high-performance aqueous binder in silicon anodes via in situ cross-linking.[J]. Power Sources, 2018,396:459-466. |
[26] | MUNAOKA T, YAN X Z, LOPEZ J , et al.Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries. Adv. Energy Mater., 2018, 8(14): 1703138-1-11. |
[27] | LUO L, XU Y, ZHANG H , et al. Comprehensive understanding of high polar polyacrylonitrile as an effective binder for Li-ion battery nano-si anodes. ACS Applied Materials & Interfaces, 2016,8(12):8154-8161. |
[28] | PARK H K, KONG B S, OH E S . Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochem. Commun., 2011,13(10):1051-1053. |
[29] | RYOU M H, KIM J, LEE I , et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater., 2013,25(11):1571-1576. |
[30] | WEI L, CHEN C, HOU Z, et al. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries.Sci. Rep., 2016, 6: 19583-1-8. |
[31] | BUQA H, HOLZAPFEL M, KRUMEICH F , et al. Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries.[J]. Power Sources, 2006,161(1):617-622. |
[32] | MAGASINSKI A, ZDYRKO B, KOVALENKO I , et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces, 2010,2(11):3004-3010. |
[33] |
KOVALENKO I, ZDYRKO B, MAGASINSKI A , et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011,334(6052):75-79.
DOI |
[34] | HAN Z J, YABUUCHI N, HASHIMOTO S , et al. Cross-linked poly(acrylic acid) with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries. ECS Electrochem. Lett., 2013,2(2):A17-A20. |
[35] | WANG L, LIU T, PENG X , et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Funct. Mater., 2017, 28(3): 1704858-1-8. |
[36] | YANG J, ZHANG L, ZHANG T , et al. Self-healing strategy for Si nanoparticles towards practical application as anode materials for Li-ion batteries. Electrochemistry Communications, 2018,87:22-26. |
[37] | ZHANG G, YANG Y, CHEN Y , et al. A wuadruple-hydrogen- bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries. Small, 2018, 14(29): 1801189-1-10. |
[38] | XU Z, YANG J, ZHANG T , et al. Silicon microparticle anodes with self-healing multiple network binder. Joule, 2018,2(5):818-819. |
[39] | KWON T W, JEONG Y K, DENIZ E , et al. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries. ACS Nano, 2015,9(11):11317-11324. |
[40] | BRIDEL J S, AZAIS T, MORCRETTE M , et al. In situ observation and long-term reactivity of Si/C/CMC composites electrodes for Li-ion batteries.[J]. Electrochem. Soc., 2011,158(6):A750-A759. |
[41] | WEI Y J, WANG Z J, YE H , et al. A stable cross-linked binder network for SnO2 anode with enhanced sodium-ion storage performance. ChemistrySelect, 2017,2(35):11365-11369. |
[42] | ZHANG L, ZHANG L, CHAI L , et al. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J. Mater. Chem. A, 2014,2(44):19036-19045. |
[43] | MAZOUZI D, LESTRIEZ B, ROUE L , et al. Silicon composite electrode with high capacity and long cycle life . Electrochemical and Solid-State Letters, 2009,12(11):A215-A218. |
[44] | BAUNACH M, JAISER S, SCHMELZLE S , et al. Delamination behavior of lithium-ion battery anodes: influence of drying temperature during electrode processing. Dry. Techn., 2016,34(4):462-473. |
[45] | KARKAR Z, MAZOUZI D, HERNANDEZ C R , et al. Threshold-like dependence of silicon-based electrode performance on active mass loading and nature of carbon conductive additive. Electrochim. Acta, 2016,215:276-288. |
[46] | HE W, TIAN H, XIN F , et al. Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries. J. Mater. Chem. A, 2015,3(35):17956-17962. |
[47] | WEI L M, HOU Z Y . High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries. J. Mater. Chem. A, 2017,5(42):22156-22162. |
[48] | NUNES R W, MARTIN J R, JOHNSON J F . Influence of molecular- weight and molecular-weight distribution on mechanical-properties. Polym. Eng. Sci., 1982,22(4):205-228. |
[49] | WU Q, HENRIKSSON M, LIU X , et al. A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules, 2007,8(12):3687-3692. |
[50] | WANG Y, GOZEN A, CHEN L , et al. Gum-like nanocomposites as conformable, conductive,adhesive electrode matrix for energy storage devices. Adv. Energy Mater., 2017, 7(6): 1601767-1-11. |
[51] | YUCA N, CETINTASOGLU M E, DOGDU M F , et al. Highly efficient poly(fluorene phenylene) copolymer as a new class of binder for high-capacity silicon anode in lithium-ion batteries. Int. J. Energy Res., 2018,42(3):1148-1157. |
[52] | HUANG S, REN J G, LIU R , et al. Low addition amount of self-healing ionomer binder for Si/graphite electrodes with enhanced cycling . New J. Chem, 2018,42(9):6742-6749. |
[53] | WANG Z Q, TIAN S K, LI S D , et al. Lithium sulfonate-grafted poly(vinylidenefluoride-hexafluoro propylene) ionomer as binder for lithium-ion batteries. RSC Adv., 2018,8(36):20025-20031. |
[54] | MILROY C, MANTHIRAM A . An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium-sulfur batteries. Adv. Mater., 2016,28(44):9744-9751. |
[55] | TAMURA T, AOKI Y, OHSAWA T , et al. Polyaniline as a functional binder for LiFePO4 cathodes in lithium batteries. Chem. Lett., 2011,40(8):828-830. |
[56] | SHI Y, ZHANG J, BRUCK A M , et al. A tunable 3D nanostructured conductive gel framework electrode for high- performance lithium ion batteries. Adv. Mater., 2017, 29(22): 1603922-1-8. |
[57] | PIECZONKA N P W, BORGEL V, ZIV B , et al. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteries. Adv. Energy Mater., 2015, 5(23): 1501008-1-10. |
[58] | LIU J, ZHANG Q, ZHANG T , et al. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv. Funct. Mater., 2015,25(23):3599-3605. |
[59] | GENDENSUREN B, OH E S . Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery.[J]. Power Sources, 2018,384:379-386. |
[60] | PAN J, XU G, DING B , et al. PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium-sulfur batteries. RSC Adv., 2016,6(47):40650-40655. |
[61] | LING M, ZHAO H, XIAO X , et al. Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries. J. Mater. Chem. A, 2015,3(5):2036-2042. |
[62] | GUO R, ZHANG S, YING H , et al. A new, effective and low cost dual-functional binder for porous silicon anodes in lithium-ion batteries.ACS Appl. Mater. Interfaces, 2019,11(15):14051-14058. |
[63] | CHEN Z, CHRISTENSEN L, DAHN J R . Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries..J. Electrochem. Soc, 2003,150(8):A1073-A1078. |
[64] | LAIDLER K J . The development of the Arrhenius equation.[J]. Chem. Educ., 1984,61(6):494-498. |
[65] | KARKAR Z, GUYOMARD D, ROUE L , et al. A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes.Electrochim. Acta, 2017,258:453-466. |
[66] | LEE S H, LEE J H, NAM D H , et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery.ACS Appl. Mater. Interfaces, 2018,10(19):16449-16457. |
[67] | GAO H, ZHOU W, JANG J H , et al. Cross-linked chitosan as a polymer network binder for an antimony anode in sodium-ion batteries. Adv. Energy Mater., 2016, 6(6): 1502130-1-7. |
[68] | WANG H, LING M, BAI Y , et al. Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. J. Mater. Chem.A, 2018,6(16):6959-6966. |
[69] | LIAO J, LIU Z, LIU X , et al. Water-soluble linear poly (ethylenimine) as a superior bifunctional binder for lithium-sulfur batteries of improved cell performance. J. Phys. Chem. C, 2018,122(45):25917-25929. |
[70] | SONG J, ZHOU M, YI R , et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater., 2014,24(37):5904-5910. |
[71] | FEI J, SUN Q Q, CUI Y L , et al. Sodium carboxyl methyl cellulose and polyacrylic acid binder with enhanced electrochemical properties for ZnMoO4·0.8H2O anode in lithium ion batteries.. J. Electroanal. Chem, 2017,804:158-164. |
[72] | LEE S Y, CHOI Y, HONG K S , et al.Influence of EDTA in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode. Appl. Surf. Sci., 2018,447:442-451. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | TAN Bowen, GENG Shuanglong, ZHANG Kai, ZHENG Bailin. Composition-gradient Design of Silicon Electrodes to Mitigate Mechanochemical Coupling Degradation [J]. Journal of Inorganic Materials, 2025, 40(7): 772-780. |
[3] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[4] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[5] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[6] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[7] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||