Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (3): 251-258.DOI: 10.15541/jim20170265
Special Issue: 钙钛矿材料
• Orginal Article • Next Articles
ZHOU Zhi-Yong, CHEN Tao, DONG Xian-Lin
Received:
2017-05-27
Revised:
2017-06-30
Published:
2018-03-20
Online:
2018-03-12
About author:
ZHOU Zhi-Yong. E-mail: zyzhou@mail.sic.ac.cn
Supported by:
CLC Number:
ZHOU Zhi-Yong, CHEN Tao, DONG Xian-Lin. Research Progress of Perovskite Layer Structured Piezoelectric Ceramics with Super High Curie Temperature[J]. Journal of Inorganic Materials, 2018, 33(3): 251-258.
Fig. 1 Relationship between d33 and Curie temperature Tc of piezoceramics with different crystal structures(Inset showing schematic diagrams of perovskite, tungsten bronze, bismuth layer and perovskite layer structures)
PY* | Formula | Structure | Ferroelectric | Ref. |
---|---|---|---|---|
1955 | Cd2Nb2O7 | Pyrochlore | Yes | [17] |
1955 | Ca2Ta2O7 | Pyrochlore | No | [17] |
1955 | Cd2Ta2O7 | Pyrochlore | No | [17] |
1955 | Pb2Ta2O7 | Pyrochlore | No | [17] |
1970 | Ca2Nb2O7 | PLS | Yes | [19] |
1974 | La2Ti2O7 | PLS | Yes | [21] |
1974 | Nd2Ti2O7 | PLS | Yes | [22] |
1975 | Sr2Nb2O7 | PLS | Yes | [23] |
1975 | Sr2Ta2O7 | PLS | Yes | [12] |
1980 | Pr2Ti2O7 | PLS | Yes | [24] |
1980 | Ce2Ti2O7 | Pyrochlore | No | [24] |
1987 | Sm2Ti2O7 | Pyrochlore | No | [25] |
2015 | Ce2Ti2O7 | PLS | Yes | [26] |
Table 1 A2B2O7-type compounds and their structures
PY* | Formula | Structure | Ferroelectric | Ref. |
---|---|---|---|---|
1955 | Cd2Nb2O7 | Pyrochlore | Yes | [17] |
1955 | Ca2Ta2O7 | Pyrochlore | No | [17] |
1955 | Cd2Ta2O7 | Pyrochlore | No | [17] |
1955 | Pb2Ta2O7 | Pyrochlore | No | [17] |
1970 | Ca2Nb2O7 | PLS | Yes | [19] |
1974 | La2Ti2O7 | PLS | Yes | [21] |
1974 | Nd2Ti2O7 | PLS | Yes | [22] |
1975 | Sr2Nb2O7 | PLS | Yes | [23] |
1975 | Sr2Ta2O7 | PLS | Yes | [12] |
1980 | Pr2Ti2O7 | PLS | Yes | [24] |
1980 | Ce2Ti2O7 | Pyrochlore | No | [24] |
1987 | Sm2Ti2O7 | Pyrochlore | No | [25] |
2015 | Ce2Ti2O7 | PLS | Yes | [26] |
Compound | Crystal system | Space group | Lattice constants | Cleavage plane | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | β | ||||||
Sr2Nb2O7 | Orthorhombic | Cmc21 | 0.3933 | 2.6726 | 0.5683 | — | (010) | [27] | |
Sr2Ta2O7 | Orthorhombic | Cmc21 | 0.3950 | 2.7270 | 0.5700 | — | (010) | [28] | |
Ca2Nb2O7 | Monoclinic | P21 | 1.3400 | 0.5510 | 0.7720 | 98°17° | (100) | [29] | |
La2Ti2O7 | Monoclinic | P21 | 1.3019 | 0.5547 | 0.7811 | 98°43° | (100) | [21] | |
Nd2Ti2O7 | Monoclinic | P21 | 1.3020 | 0.5480 | 0.7680 | 98°28° | (100) | [22] | |
Pr2Ti2O7 | Monoclinic | P21 | 0.7715 | 0.5488 | 1.3004 | 98°33° | (001) | [30] |
Table 2 Crystallographic properties of A2B2O7-type PLS compounds
Compound | Crystal system | Space group | Lattice constants | Cleavage plane | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | β | ||||||
Sr2Nb2O7 | Orthorhombic | Cmc21 | 0.3933 | 2.6726 | 0.5683 | — | (010) | [27] | |
Sr2Ta2O7 | Orthorhombic | Cmc21 | 0.3950 | 2.7270 | 0.5700 | — | (010) | [28] | |
Ca2Nb2O7 | Monoclinic | P21 | 1.3400 | 0.5510 | 0.7720 | 98°17° | (100) | [29] | |
La2Ti2O7 | Monoclinic | P21 | 1.3019 | 0.5547 | 0.7811 | 98°43° | (100) | [21] | |
Nd2Ti2O7 | Monoclinic | P21 | 1.3020 | 0.5480 | 0.7680 | 98°28° | (100) | [22] | |
Pr2Ti2O7 | Monoclinic | P21 | 0.7715 | 0.5488 | 1.3004 | 98°33° | (001) | [30] |
Fig. 3 (a) Sketch of the largest atomic displacements associated with the strongest instability mode obtained for the Cmcm phase of La2Ti2O7; (b) Sketch of a typical anti-ferrodistortive mode occurring in an ideal perovskite structure of BaTiO3. The arrows on the side represent the electric dipoles associated to the displacement of oxygens in different y-planes[34]
Fig. 5 SEM images of PLS high temperature piezoceramics fabricated with different techniques(a) Sr2Nb2O7 by solid state reaction method[42]; (b) Sr2Nb2O7 by spark plasma sintering[15]; (c) 0.3wt%ZnO-Sr2Nb2O7 by solid state reaction method[41]; (d) Ce2Ti2O7 at 4 GPa, 1100℃[26]
Materials | Process | Ts/℃ | Density/% | Tc/℃ | d33/(pC/N) | Ref. |
---|---|---|---|---|---|---|
Sr2(Nb1-xTax)2O7 | HF | 1400 | 95 | 823 | 1.6 | [38] |
Sr2-xBaxNb2O7 | SPS | 1200 | 95 | 1175 | 3.6 | [45] |
La2-xCexTi2O7 | SPS | 1400 | 95 | 1440 | 3.9 | [46] |
(Sr1-xCex)2Nb2O7 | SPS | 1350 | 98 | 1327 | 1.5 | [47] |
Sr2(Nb1-xWx)2O7 | SPS | 1425 | 98 | 1308 | — | [47] |
(SmxLa1-x)Ti2O7 | SPS | 1400 | — | 1430 | 2.8 | [48] |
(BixLa1-x)Ti2O7 | SPS | 1350 | 95 | 1395 | 3.6 | [49] |
Sr2Nb2O7-xwt%La2O3 | SSR | 1350 | — | — | — | [43] |
Ca2-xBaxNb2O7 | SSR | 1350 | 95 | 1280 | — | [44] |
Sr2(Nb1-xVx)2O7 | SSR | 1200 | 96 | — | — | [40] |
Sr2Nb2O7-xwt%ZnO | SSR | 1400 | 97 | — | — | [41] |
Sr2Nb2O7-xwt%CuO | SSR | 1180 | 98 | 1342 | 1.1 | [42] |
(1-x)Sr2Nb2O7-xNa0.5Bi0.5TiO3 | SSR | 1420 | 96.8 | 1330 | 1.0 | [51] |
Table 3 Characteristics of PLS piezoceramics fabricated via different methods
Materials | Process | Ts/℃ | Density/% | Tc/℃ | d33/(pC/N) | Ref. |
---|---|---|---|---|---|---|
Sr2(Nb1-xTax)2O7 | HF | 1400 | 95 | 823 | 1.6 | [38] |
Sr2-xBaxNb2O7 | SPS | 1200 | 95 | 1175 | 3.6 | [45] |
La2-xCexTi2O7 | SPS | 1400 | 95 | 1440 | 3.9 | [46] |
(Sr1-xCex)2Nb2O7 | SPS | 1350 | 98 | 1327 | 1.5 | [47] |
Sr2(Nb1-xWx)2O7 | SPS | 1425 | 98 | 1308 | — | [47] |
(SmxLa1-x)Ti2O7 | SPS | 1400 | — | 1430 | 2.8 | [48] |
(BixLa1-x)Ti2O7 | SPS | 1350 | 95 | 1395 | 3.6 | [49] |
Sr2Nb2O7-xwt%La2O3 | SSR | 1350 | — | — | — | [43] |
Ca2-xBaxNb2O7 | SSR | 1350 | 95 | 1280 | — | [44] |
Sr2(Nb1-xVx)2O7 | SSR | 1200 | 96 | — | — | [40] |
Sr2Nb2O7-xwt%ZnO | SSR | 1400 | 97 | — | — | [41] |
Sr2Nb2O7-xwt%CuO | SSR | 1180 | 98 | 1342 | 1.1 | [42] |
(1-x)Sr2Nb2O7-xNa0.5Bi0.5TiO3 | SSR | 1420 | 96.8 | 1330 | 1.0 | [51] |
[1] | 董显林. 功能陶瓷研究进展与发展趋势. 中国科学院院刊, 2003, 6: 407-412. |
[2] | LI Y X.Some hot topics in electroceramics research. Journal of Inorganic Materials, 2014, 29(1): 1-5. |
[3] | JIANG X P, KIM K, ZHANG S, et al.High-temperature piezoelectric sensing. Sensors, 2014, 14(1): 144-169. |
[4] | ANTON S R, SODANO H A.A review of power harvesting using piezoelectric materials (2003-2006). Smart Mater. Struct., 2007, 16(3): R1-R21. |
[5] | LEE H J, ZHANG S J, COHEN Y, et al.High temperature, high power piezoelectric composite transducers. Sensors, 2014, 14(8): 14526-14552. |
[6] | ZHANG S J, JIANG X N, LAPSLEY M, et al. Piezoelectric accelerometers for ultrahigh temperature applications. Appl. Phys. Lett., 2010, 96(1): 013506-1-3. |
[7] | ZHANG S J, YU F P.Piezoelectric materials for high temperature sensors. [J]. Am. Ceram. Soc., 2010, 94(10): 3153-3170. |
[8] | NIE R, CHEN Q, LIU H, et al. MnO2-doped (Ca0.4Sr0.6)Bi4Ti4O15 high-temperature piezoelectric ceramics with improved thermal stability. J. Mater. Sci., 2016, 51(11): 5104-5112. |
[9] | 李玉臣, 包绍明, 周志勇, 等.一种高温下稳定使用的铋层状结构压电陶瓷材料及其制备方法. 中国, C04B35/462, ZL200610147892.3. 2007.07.11. |
[10] | ZHOU Z Y, LI Y C, HUI S P, et al. Effect of tungsten doping in bismuth-layered Na0.5Bi2.5Nb2O9 high temperature piezoceramics. Appl. Phys. Lett., 2014, 104(1): 012904-1-4. |
[11] | 周志勇, 李玉臣, 董显林, 等.提高铋层状结构压电陶瓷材料的压电性能以及其温度稳定性的方法. 中国, C04B41/80, ZL201510107721.7. 2015.06.24. |
[12] | NANAMATSU S, KIMURA M, DOI K, et al. Crystallographic and dielectric properties of ferroelectric A2B2O7 (A=Sr, B=Ta, Nb) crystals and their solid solutions. J. Phys. Soc. Jpn., 1975, 38(3): 817-824. |
[13] | GAO Z P, YAN H X, NING H P, et al.Ferroelectricity of Pr2Ti2O7 ceramics with super high Curie point. Adv. Appl. Ceram., 2013, 112(3): 69-74. |
[14] | YAN H X, NING H P, KAN Y, et al.Piezoelectric ceramics with super-high Curie points .[J]. Am. Ceram. Soc., 2009, 92(10): 2270-2275. |
[15] | BRAHMAROUTU B, MESSING G L, TROLIER S.Densification and anisotropic grain growth in Sr2Nb2O7 .[J]. Mater. Sci., 2000, 35(22): 5673-5680. |
[16] | COOK W R, JAFFE H.Ferroelectricity in oxides of fluorite structure. Phys. Rev., 1952, 88(6): 1426. |
[17] | JONA F, SHIRANE G, PEPINSKY R.Dielectric, X-Ray and optical study of ferroelectric Cd2Nb2O7 and related compounds. Phys. Rev., 1955, 98(4): 903-909. |
[18] | ROWLAND J F, BRIGHT N F H, JONGEJAN A. The Crystallography of Compounds in the Calcium Oxide-niobium Pentoxide System. Adv. X-Ray Analysis: Volume 2 Proceedings of the Seventh Annual Conference on Applications of X-Ray Analysis, 1958, 2: 97-106. |
[19] | BALLMAN A A.Growth of piezoelectric and ferroelectric materials by the czochraiski technique .[J]. Am. Ceram. Soc., 1965, 48(2): 112-113. |
[20] | BRANDONAB J K, MEGAWA H D.On the crystal structure and properties of Ca2Nb2O7, “calcium pyroniobate”. Phil. Mag. A, 1970, 21(169): 189-194. |
[21] | NANAMATSU S, KIMURA M, DOI K, et al. A new ferroelectric: La2Ti2O7. Ferroelectrics, 1974, 8(1): 511-513. |
[22] | KIMURA M, NANAMATSU S, KAWAMURA T, et al.Ferroelectric, electrooptic and piezoelectric properties of Nd2Ti2O7 single crystal. Jpn. [J]. Appl. Phys. 1974, 13(9): 1473-1474. |
[23] | ISHIZAWA N, MARUMO F.The crystal structure of Sr2Nb2O7, a compound with perovskite-type slabs. Acta Cryst., 1975, 31(7): 1912-1915. |
[24] | SYCH A M, TITOV Y A, NEDILKO C A.Synthesis and study of ferroelectric compounds with layered structures .[J]. Inorganic Chem., 1980, 25(8): 2056-2061. |
[25] | SYCH A M, TITOV Y A, NEDILKO C A, et al.Study of the conditions for the isovalent substitution of rare-earth atoms in Ln2Ti2O7 with layered structure. [J]. Inorganic Chem., 1987, 32(11): 2625-2628. |
[26] | GAO Z P, LIU L, YAN H X, et al.Cerium titanate (Ce2Ti2O7): a ferroelectric ceramic with perovskite-like layered structure (PLS). J. Am. Ceram. Soc., 2015, 98(12): 3930-3934. |
[27] | NANAMATSU S, KIMURA M, DOI K, et al. Ferroelectric properties of Sr2Nb2O7 single crystal. J. Phys. Soc. Jpn., 1971, 30(1): 300-301. |
[28] | ISHIZAWA N, MARUMO F.Compound with perovskite-type slabs. II. the crystal structure of Sr2Ta2O7. Acta. Cryst., 1976, 32(9): 2564-2566. |
[29] | NANAMATSU S, KIMURA M.Ferroelectric properties of Ca2Nb2O7 single crystal .[J]. Phys. Soc. Jpn., 1971, 36(5): 597-602. |
[30] | PATWE S J, KATARI V, SALKE N P, et al.Structural and electrical properties of layered perovskite type Pr2Ti2O7: experimental and theoretical investigations. J. Mater. Chem. C, 2015, 3(17): 4570-4584. |
[31] | FILIPPETTI A, HILL N A. Coexistence of magnetism and ferroelectricity in perovskites. Phys. Rev. B, 2002, 65(19): 195120- 1-11. |
[32] | BHATTACHARJEE S, BOUSQUET E, GHOSEZ P. Engineering multiferroism in CaMnO3. Phys. Rev. Lett., 2009, 102(11): 117602- 1-4. |
[33] | CATALAN G, SCOTT J F.Physics and applications of bismuth ferrite. Adv. Mater., 2009, 21(24): 2463-2485. |
[34] | JORGE L P, JORGE I. Ab initio study of proper topological ferroelectricity in layered perovskite La2Ti2O7. Phys. Rev. B, 2011, 84(7): 075121-1-13. |
[35] | BRUYER E, SAYEDE A. Density functional calculations of the structural, electronic,ferroelectric properties of high-k titanate Re2Ti2O7 (Re = La and Nd). J. Appl. Phys., 2010, 108(5): 053705- 1-9. |
[36] | BRAHMAROUTU B, MESSING G L, MCKINSTRY S T.Molten salt synthesis of anisotropic Sr2Nb2O7 particles .[J]. Am. Ceram. Soc., 1999, 82(6): 1565-1568. |
[37] | PRASADARAO A V, SELVARAJ U, KOMARNENI S.Sol-Gel synthesis of strontium pyroniobate and calcium pyroniobate .[J]. Am. Ceram. Soc., 1992, 75(10): 2697-2701. |
[38] | FUIERER P A, SHROUT T R, NEWNHAM R E.Physical, electrical, and piezoelectric properties of hot-forged Sr2(NbTa)2O7 ceramics. Mat. Res. Soc. Symp. Proc., 1992, 276: 51-57. |
[39] | GAO Z P, SUZUKI T S, GRASSO S, et al.Highly anisotropic single crystal-like La2Ti2O7 ceramic produced by combined magnetic field alignment and templated grain growth .[J]. Eur. Ceram. Soc., 2015, 35(6): 1771-1776. |
[40] | SERAJI S, WU Y, LIMMER S, et al.Processing and properties of vanadium doped strontium niobate. Mat. Sci. Eng., 2002, 88(1): 73-78. |
[41] | IQBAL Y, MANAN A, SAFEEN M K, et al. ZnO as sintering additive in Sr2Nb2O7. J. Phys.: Conference Series, 2010, 241: 012029-1-4. |
[42] | CHEN T, LIANG R H, JIANG K, et al.Low-temperature sintering and electrical properties of Sr2Nb2O7 piezoceramics by CuO addition .[J]. Am. Ceram. Soc., 2017, 100(6): 2397-2401. |
[43] | FU C, LIU H, CHEN G, et al.Microstructure and electric properties of strontium lanthanum niobate ceramics. Ferroelectrics, 2012, 432(1): 8-13. |
[44] | LI C C, XIANG H C, QIN Y D, et al. Effects of barium substitution on the sintering behavior, dielectric properties of Ca2Nb2O7 ferroelectric ceramics. J. Adv. Diele.2017, 7(2): 1750013-1-5. |
[45] | GAO Z P, NING H P, CHEN C, et al.The effect of barium substitution on the ferroelectric properties of Sr2Nb2O7 ceramics .[J]. Am. Ceram. Soc., 2013, 96(4): 1163-1170. |
[46] | GAO Z P, YAN H X, NING H P, et al.Piezoelectric and dielectric properties of Ce substituted La2Ti2O7 ceramics .[J]. Eur. Ceram. Soc., 2013, 33(5): 1001-1008. |
[47] | NING H P, YAN H X, GAO Z P, et al.Effect of donor dopants cerium and tungsten on the dielectric and electrical properties of high Curie point ferroelectric strontium niobate. Ceram. Int., 2013, 39(7): 7669-7675. |
[48] | CHEN C, GAO Z P, YAN H X, et al.Crystallographic structure and ferroelectricity of (AxLa1-x)2Ti2O7 (A=Sm and Eu) solid solutions with high Tc. J. Am. Ceram. Soc., 2016, 99(2): 523-530. |
[49] | LI C C, XIANG H C, CHEN J W, et al.Phase transition, dielectric relaxation and piezoelectric properties of bismuth doped La2Ti2O7 ceramics. Ceram. Int., 2016, 42(9): 11453-11458. |
[50] | TITOV V V, AKHNAZAROVA V V, REZNITCHENKO L A, et al.Evolution of fractal grain structures in NaNbO3-Ca2Nb2O7 and NaNbO3-Sr2Nb2O7 systems. Ferroelectrics, 2004, 298(1): 335-339. |
[51] | CHEN T, LIANG R H, LI Y C, et al.Structure and electrical properties of perovskite layer (1-x)Sr2Nb2O7-x(Na0.5Bi0.5)TiO3 high- temperature piezoceramics. J. Am. Ceram. Soc., 2017, 100(4): 1065-1072. |
[52] | GAO Z P, LU C J, WANG Y H, et al. Super stable ferroelectrics with high Curie point. Sci. Rep., 2016, 6: 24139-1-6. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||