Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (5): 461-469.DOI: 10.3724/SP.J.1077.2014.13471
• Review • Previous Articles Next Articles
DING Dong-Hai1,2, LUO Fa2, ZHOU Wan-Cheng2, SHi Yi-Min2, ZHOU Liang3
Received:
2013-09-17
Revised:
2013-11-08
Published:
2014-05-20
Online:
2014-04-24
About author:
DING Dong-Hai. E-mail:dingdongnwpu@qq.com
Supported by:
National Natural Science Foundation of China (51302206); Research Fund for the Doctoral Program of Higher Education of China(20126120120016); State Key Laboratory of Solidification Processing in NWPU (SKLSP201305); Scientific Research Program Funded by Shaanxi Provincial Education Department (2013JK0921, 2013JK0922, 2010JK643); Scientific Research Fund for Young Teachers of Puyang Refractories Education Sducation Scholarship
CLC Number:
DING Dong-Hai, LUO Fa, ZHOU Wan-Cheng, SHi Yi-Min, ZHOU Liang. Research Status and Outlook of High Temperature Radar Absorbing Materials[J]. Journal of Inorganic Materials, 2014, 29(5): 461-469.
Add to citation manager EndNote|Ris|BibTeX
[1] CHEN XUE-GANG, YE YING, CHENG JI-PENG. Recent progress in electromagnetic wave absorbers. Journal of Inorganic Materials, 2011, 26(5): 449–457.[2] LIU HAI-TAO, CHENG HAI-FENG, WANG JUN, et al. Review on high-temperature structural radar absorbing materials. Materials Review, 2009, 23(10): 24–27.[3] XIE WEI, CHENG HAI-FENG, KUANG JIA-CAI. Effect of heating rate on the complex permittivity of hollow-porous carbon fibers. Journal of Inorganic Materials, 2011, 26(9): 939–943.[4] XIE W, CHENG H F, CHU Z Y, et al. Effect of carbonization temperature on the structure and microwave absorbing properties of hollow carbon fibres. Ceramics International, 2011, 37(6): 1947–1951.[5] XIE W, CHENG H F, CHU Z Y, et al. Effect of carbonization time on the structure and electromagnetic parameters of porous-hollow carbon fibres. Ceramics International, 2009, 35(7): 2705–2710.[6] HUANG Z B, ZHOU W C, KANG W B, et al. Dielectric and microwave-absorption properties of the partially carbonized PAN cloth/epoxy–silicone composites. Composites: Part B, 2012, 43(8): 2980–2954.[7] DU Y C, WANG J Y, CUI C K, et al. Pure carbon microwave absorbers from anion-exchange resin pyrolysis. Synthetic Metals, 2010, 160(19/20): 2191–2196.[8] SUN LIANG-KUI, CHENG HAI-FENG, CHU ZENG-YONG, et al. Preparation and properties of C/SiO2 coaxial fibers. Journal of Inorganic Materials, 2009, 24(2): 310–314.[9] YAN JIA, CHU ZENG-YONG, CHENG HAI-FENG, et al. Microwave absorbing property of pre-oxidized PAN fibers carbonized in BCl3. Journal of Inorganic Materials, 2012, 27(8): 813–816.[10] ZHOU W, XIAO P, LI Y, et al. Dielectric properties of BN modified carbon fibers by dip-coating. Ceramics International, 2013, 39(6): 6569–6576.[11] ZHOU W, XIAO P, LI Y. Preparation and study on microwave absorbing materials of boron nitride coated pyrolytic carbon particles. Appl. Surf. Sci., 2012, 258(22): 8455–8459.[12] CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 2010, 48(3):788–796[13] KOU HUAMIN, ZHU YONG, CHEN MINGXIA, et al. Microwave absorbing performance of silica matrix composites reinforced by carbon nanotubes and carbon fiber. Int. J. Appl. Ceram. Technol., 2012, 10(2): 245–250.[14] WANG X Y, LUO F, YU X M, et al. Influence of short carbon fiber content on mechanical anddielectric properties of Cfiber/Si3N4 composites. Scripta Materialia, 2007, 57(4): 309–312.[15] LI X M, ZHANG L T, YIN X W. Synthesis, Electromagnetic reflection loss and oxidation resistance of pyrolytic carbon-Si3N4 ceramics with dense Si3N4. J. Eur. Ceram. Soc. 2012, 32(8): 1485–1489[16] FENG G Y, FANG X Y, WANG J J, et al. Effect of heavily doping with boron on electronic structures and optical properties of β-SiC. Physica B, 2010, 405(12): 2625–2631.[17] LIU H S, FANG X Y, SONG W L, et al. Modification of band gap of β-SiC by N-doping. Chinese Physics Letters, 2009, 26(6): 067101.[18] LI ZHI-MIN, SHI JIAN-ZHANG, WEI XIAO-HEI, et al. First principles calculation of electronic structure for Al-doped 3C-SiC and its microwave dielectric properties. Acta Phys. Sin., 2012, 61(23): 237103.[19] DOU Y K, JIN H B, CAO M S, et al. Structural stability, electronic and optical properties of Ni-doped 3C–SiC by first principles calculation. Journal of Alloys and Componds, 2011, 509(20): 6117–6122.[20] LI ZHI-MIN, DU HONG-LIANG, LUO FA, et al. Study process of silicon carbide as high temperature microwave absorber. Rare Metal Material and Engineering, 2007, 36(Suppl.3): 96–99.[21] SU X L, ZHOU W C, WANG J B. Preparation and dielectric property of Al and N Co-doped SiC powder by combustion synthesis. Journal of the American Ceramic Society, 2012, 95(4):1388–1393.[22] SU X L, ZHOU W C, XU J, et al. Preparation and dielectric property of B and N-codoped SiC powder by combustion synthesis. Journal of Alloys and Compounds, 2013, 551(25): 343–347.[23] BUNSELL A R, PIANT A. A review of the development of the three generations of small diameter silicon carbide fibres. Journal of Materials Science, 2006, 41(3): 823–839.[24] DING D H, ZHOU W C, ZHANG B, et al. Complex permittivity and microwave absorbing properties of SiC fiber woven fabrics. Journal of Materials Science, 2011, 46(8): 2709–2714.[25] WANG D Y, SONG Y C, LI Y Q. Effect of composition and structure on specific resistivity of SiC fibers. Transactions of Nonferrous Metals Society of China, 2012, 22(5): 1133–1139.[26] HU T J, LI X D, LI G Y, et al. Axial graded carbon fiber and silicon carbide fiber with sinusoidal electrical resistivity. Journal of the American Ceramic Society, 2011, 94(9): 2808–2811.[27] DING DONG-HAI, ZHOU WAN-CHENG, ZHOU XUAN, et al. Structure and microwave absorbing property of polycarbosilane derived silicon carbide ceramic. Chinese Journal of Inorganic Chemistry, 2012, 28(5): 922–926.[28] LI Q, YIN X W, DUAN W Y, et al. Electrical, dielectric and microwave-absorption properties of polymer derived SiC ceramics in X band. Journal of Alloys and Compounds, 2013, 565(15): 66–72.[29] 王 军. 含过渡金属的碳化硅纤维的制备及其电磁性能. 长沙: 国防科学技术大学博士论文, 1997.[30] CHEN ZHI-YAN, WANG JUN, LI XIAO-DONG, et al. Preparation of continuous Fe containing carbide silicon fibers and their structural radar-wave absorbing materials. Acta Materiae Compositae Sinica, 2007, 24(5): 72–76.[31] CHEN X J, SU Z M, ZHANG L, et al. Iron nanoparticle- containing silicon carbide fibers prepared by pyrolysis of Fe(CO)5-doped polycarbosilane fibers. Journal of the American Ceramic Society, 2010, 93(1): 89–95.[32] 刘旭光. 异形截面碳化硅纤维制备及其吸波性能. 长沙: 国防科学技术大学博士学位论文, 2010.[33] HUANG Yun-Xia, CAO Quan-Xi, LI Zhi-Min, et al. First-principles calculation of microwave dielectric properties of Al-doping ZnO powders. Acta Physical Sinica, 2009, 58(11): 8002–8007.[34] WANG Y, LUO F, ZHANG L, et al. Microwave dielectric properties of Al-doped ZnO powders synthesized by coprecipitation method. Ceramics International, 2013, 39(8): 8723–8727.[35] KONG L, YIN X W, ZHANG L T, et al. Effect of aluminum doping on microwave absorption properties of ZnO/ZrSiO4 composite ceramics. Journal of the American Ceramic Society, 2012, 95(10): 3158–3165.[36] KONG L, YIN X W, LI Q, et al. High-temperature electromagnetic wave absorption properties of ZnO/ZrSiO4 composite ceramics. Journal of the American Ceramic Society, 2013, 96(7): 2211–2217.[37] 刘汉东. 四针状氧化锌晶须的掺杂及其性能研究. 国防科学技术大学硕士学位论文, 2008, 长沙.[38] CHEN Y J, CAO M S, WANG T H, et al. Microwave absorption properties of the ZnO nanowire-polyester composites. Applied Physics Letters, 2004, 84(17): 3367–3369.[39] ZHOU Z W, CHU L S, HU S C. Microwave absorption behaviors of tetra-needle-like ZnO whiskers. Materials Science and Engineering B, 2006, 126: 93-96.[40] LI H F, HUANG Y H, SUN G B, et al. Directed growth and microwave absorption property of crossed ZnO netlike micro-nanostructures. The Journal of Physical Chemistry C, 2010, 114(22): 10088–10091.[41] ZHUO R F, QIAO L, FENG H T, et al. Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees. Journal of Applied Physics, 2008, 104(9): 094101–1–5.[42] CAO M S, SHI X L, FANG X Y, et al. Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Applied Physics Letters, 2007, 91(20): 203110–1–3.[43] FANG X Y, SHI X L, CAO M S, et al. Micro-current attenuation modeling and numerical simulation for cage-like ZnO/SiO2 nanocomposite. Journal of Applied Physics, 2008, 104(9): 096101–1–3.[44] FANG X Y, CAO M S, SHI X L, et al. Microwave responses and general model of nanotetraneedle ZnO: Integration of interface scattering, microcurrent, dielectric relaxation, and microantenna. Journal of Applied Physics, 2010, 107(5): 054304–1–11.[45] ZHUO R F, FENG H T, CHEN J T, et al. Multistep synthesis, growth mechanism, optical, and microwave absorption properties of ZnO dendritic nanostructures. The Journal of Physical Chemistry C, 2008, 112(31): 11767–11775.[46] YANG H J, YUAN J, LI Y, et al. Silicon carbide powders: Temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range. Solid State Communications, 2013, 163: 1–6.[47] YUAN J, YANG H J, HOU Z L, et al. Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technology, 2013, 237: 309–313.[48] LIU H T, TIAN H, CHENG H F. Dielectric properties of SiC fiber- reinforced SiC matrix composites in the temperature range from 25 to 700℃ at frequency between 8.2 and 18 GHz. Journal of Nuclear Materials, 2013, 432(1/3): 57–60. [49] YUAN J, SONG W L, FANG X Y, et al. Tetra-needle zinc oxide/ silica composites: High-temperature dielectric properties at X-band. Solid State Communications, 2013, 154: 64–68.[50] QING Y C, ZHOU W C, LUO F, et al. Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon, 2010, 48(14): 4074–4080.[51] HUA SHAO-CHUN, WANG HAN-GONG, WANG LIU-YING, et al. Absorption properties of micro-plasma sprayed carbon nanotube-nano structure Al2O3-TiO2 composite coatings. Acta Physical Sinica, 2009, 58(9): 6534–6541.[52] ZHOU L, ZHOU W C, SU J B, et al. Plasma sprayed Al2O3/FeCrAl composite coatings for electromagnetic wave absorption application. Applied Surface Science, 2012, 258(7): 2691–2696.[53] 刘海韬. 夹层结构SiCf/SiC雷达吸波材料设计、制备及性能研究. 长沙: 国防科学技术大学博士学位论文, 2010.[54] HUANG Z B, KANG W B, QING Y C, et al. Influences of SiCf content and length on the strength, toughness and dielectric properties of SiCf/LAS glass-ceramic composites. Ceramics International, 2013, 39(3): 3135–3140.[55] LI X M, ZHANG L T, YIN X W. Effect of chemical vapor infiltration of Si3N4 on the mechanical and dielectric properties of porous Si3N4 ceramic fabricated by a technique combining 3-D printing and pressureless sintering. Scripta Materiala, 2012, 67: 380–383.[56] YU X M, ZHOU W C, LUO F, et al. Effect of fabrication atmosphere on the dielectric properties of SiC/SiC composites. Journal of Alloys and Compounds, 2009, 479(1/2): L1–L3.[57] DING D H, SHI Y M, WU Z H, et al. Electromagnetic interference shielding and dielectric properties of SiCf/SiC composites containing pyrolytic carbon interphase. Carbon, 2013, 60(538/561): 552–555.[58] 丁冬海. SiCf/SiC耐高温结构吸波材料性能研究. 西安: 西北工业大学博士学位论文, 2012.[59] DING D H, ZHOU W C, LUO F, et al. Mechanical properties and oxidation resistance of SiCf/CVI-SiC composites with PIP-SIC interphase. Materials Science and Engineering A, 2012, 543(1): 1–5.[60] LIU H T, CHENG H F, WANG J, et al. Dielectric properties of the SiC fiber-reinforced SiC matrix composites with the CVD SiC interphases. Journal of Alloys and Compounds, 2010, 491(1/2): 248–251.[61] LIU H T, TIAN H. Mechanical and microwave dielectric properties of SiCf/SiC composites with BN interphase prepared by dip-coating process. Journal of European Ceramic Society, 2012, 32(10): 2502–2512. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||