Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (5): 449-460.DOI: 10.3724/SP.J.1077.2014.13669
• Review • Next Articles
ZHANG Fa-Qiang1, 2, LI Yong-Xiang1
Received:
2013-12-19
Revised:
2014-01-23
Published:
2014-05-20
Online:
2014-04-24
About author:
ZHANG Fa-Qiang. E-mail: zhangfq@student.sic.ac.cn
Supported by:
National Natural Science Foundation of China (50932007); The Ministry of Science and Technology Project 973(2009CB613305)
CLC Number:
ZHANG Fa-Qiang, LI Yong-Xiang. Recent Progress on Bismuth Layer-structured Ferroelectrics[J]. Journal of Inorganic Materials, 2014, 29(5): 449-460.
Add to citation manager EndNote|Ris|BibTeX
[1] AURIVILLIUS B. Mixed bismuth oxides with layer lattices. 1. The structure type of CaNb2Bi2O9. Arkiv for Kemi, 1950, 1(5): 463-480.[2] AURIVILLIUS B. Mixed bismuth oxides with layer lattices. 2. Structure of Bi4Ti3O12. Arkiv for Kemi, 1950, 1(6): 499-512.[3] AURIVILLIUS B. Mixed bismuth oxides with layer lattices III. Structure of BaBi4Ti4O15. Arkiv for Kemi, 1950, 2(6): 519-527.[4] NEWNHAM R E, WOLFE R W, DORRIAN J F. Structural basis of ferroelectricity in bismuth titanate family. Materials Research Bulletin, 1971, 6(10): 1029-1039.[5] STOLTZFUS M W, WOODWARD P M, SESHADRI R, et al. Structure and bonding in SnWO4, PbWO4, and BiVO4: Lone pairs vs inert pairs. Inorganic Chemistry, 2007, 46(10): 3839-3850.[6] KUDO A, KATO H, TSUJI I. Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters, 2004, 33(12): 1534-1539.[7] WANG W Z, SHANG M, YIN W Z, et al. Recent progress on the bismuth containing complex oxide photocatalysts. Journal of Inorganic Materials, 2012, 27(1): 11-18.[8] KENDALL K R, NAVAS C, THOMAS J K, et al. Recent developments in oxide ion conductors: aurivillius phases. Chemistry of Materials, 1996, 8(3): 642-649.[9] ZHANG S J, FA-PENG Y. Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc., 2011, 94(10): 3153-3170.[10] TRESSLER J F, ALKOY S, NEWNHAM R E. Piezoelectric sensors and sensor materials. Journal of Electroceramics, 1998, 2(4): 257-272.[11] YAN H X, LI C E, ZHOU J G, et al. Structures and properties of bismuth layer-structured piezoelectric ceramics with high TC. Journal of Inorganic Materials, 2000, 15(2): 209-220.[12] LOMANOVA N A, MOROZOV M I, UGOLKOV V L, et al. Properties of aurivillius phases in the Bi4Ti3O12-BiFeO3 system. Inorganic Materials, 2006, 42(2): 189-195.[13] SCHAAK R E, MALLOUK T E. Perovskites by design: a toolbox of solid-state reactions. Chemistry of Materials, 2002, 14(4): 1455-1471.[14] ARMSTRONG R A, NEWNHAM R E. Bismuth titanate solid solutions. Materials Research Bulletin, 1972, 7(10): 1025-1034.[15] 陆佩文. 无机材料科学基础. 武汉: 武汉工业大学出版社, 1996: 43-44.[16] SUBBARAO E C. Crystal chemistry of mixed bismuth oxides with layer-type structure. J. Am. Ceram. Soc., 1962, 45(4): 166-169.[17] STONEHAM A M, DURHAM P J. Ordering of crystallographic shear planes-theory of regular arrays. Journal of Physics and Chemistry of Solids, 1973, 34(12): 2127-2135.[18] RAMASESHA S, RAO C N R. Monte-carlo simullation of polytypes. Philosophical Magazine, 1977, 36(4): 827-833.[19] KITTEL C. On infinitely adaptive crystal structures. Solid State Communications, 1978, 25(8): 519-520.[20] KIKUCHI T. Stability of layered bismuth compounds in relation to the structural mismatch. Materials Research Bulletin, 1979, 14(12): 1561-1569.[21] IGUCHI E, TILLEY R J D. The elastic strain-energy of crystallographic shear planes in reduced tungsten trioxide. J. Solid State Chem., 1980, 32(2): 221-231.[22] FRIT B, MERCURIO J P. The crystal-chemistry and dielectric-properties of the aurivillius family of complex bismuth oxides with perovskite-like layered structures. J. Alloys. Compd., 1992, 188(1/2): 27-35.[23] LOMANOVA N A, GUSAROV V V. Phase states in the Bi4Ti3O12-BiFeO3 section in the Bi2O3-TiO2-Fe2O3 system. Russian Journal of Inorganic Chemistry, 2011, 56(4): 616-620.[24] MOROZOV M I, GUSAROV V V. Synthesis of Am-1Bi2MmO3m+3 compounds in the Bi4Ti3O12-BiFeO3 system. Inorganic Materials, 2002, 38(7): 723-729.[25] ZHOU W Z. Microstructures of some Bi-W-Nb-O phases. J. Solid State Chem., 2002, 163(2): 479-483.[26] DING Y, LIU J S, ZHU J S, et al. Stacking faults and their effects on ferroelectric properties in strontium bismuth tantalate. Journal of Applied Physics, 2002, 91(4): 2255-2261.[27] HUTCHISON J L, ANDERSON J S, RAO C N R. Electron- microscopy of ferroelectric bismuth oxides containing perovskite layers. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1977, 355(1682): 301-312.[28] HUTCHISON J L, SMITH D J. High-resolution imaging of the ferroelectric perovskite Ba2Bi4Ti5O18. Acta Crystallographica Section A, 1981, 37(JAN): 119-125.[29] ZHOU W Z. Aurivillius phases: Non-superconducting materials- Advanced Materials, 1990, 2(2): 94-97.[30] KOBAYASHI T, NOGUCHI Y, MIYAYAMA M. Polarization properties of superlattice-structured Bi4Ti3O12-BaBi4Ti4O15 single crystals and ceramics: Comparison with Bi4Ti3O12 and BaBi4Ti4O15. Japanese Journal of Applied Physics, 2004, 43(9B): 6653-6657.[31] KOBAYASHI T, NOGUCHI Y, MIYAYAMA M. Enhanced spontaneous polarization in superlattice-structured Bi4Ti3O12-BaBi4Ti4O15 single crystals. Applied Physics Letters, 2005, 86(1): 012907-1-3.[32] GAO X, GU H, LI Y X, et al. Structural evolution of the intergrowth bismuth-layered Bi7Ti4NbO21. Journal of Materials Science, 2011, 46(16): 5423-5431.[33] Gao X, Wang X H, Xing J J, et al. Nb Solution within Bi4Ti3O12 sub-structure in the intergrowth bismuth-layered compound Bi7Ti4NbO21. Journal of Inorganic Materials, 2013, 28(5): 561-565[34] RAO C N R. Intergrowth structures in inorganic solids: a new class of materials. Bull. Mater. Sci., 1985, 7(3/4): 155-178.[35] RAO C N R, Thomas J M. Intergrowth structrues: the chemistry of solid-solid interfaces. Accounts of Chemical Research, 1985, 18(4): 113-119.[36] DORRIAN J F, NEWNHAM R E, KAY M I, et al. Crystal structure of Bi4Ti3O12. Ferroelectrics, 1971, 3(1): 17-27.[37] Rae A D, Thompson J G, Withers R L, et al. Structure refingment of commensurately modulated bismuth titanate, Bi4Ti3O12. Acta Crystallogr. Sect. B-Struct. Commun., 1990, 46: 474-487.[38] BROWN I D. Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 2009, 109(12): 6858-6919.[39] SHIMAKAWA Y, KUBO Y, NAKAGAWA Y, et al. Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9. Applied Physics Letters, 1999, 74(13): 1904-1906.[40] SHIMAKAWA Y, KUBO Y, NAKAGAWA Y, et al. Crystal structure and ferroelectric properties of ABi2Ta2O9(A = Ca, Sr, and Ba). Physical Review B, 2000, 61(10): 6559-6564.[41] SUBBARAO E C. Family of ferroelectric bismuth compounds. Journal of Physics and Chemistry of Solids, 1962, 23(6): 665-676.[42] LI C E, LI Y, ZHOU J G. Investigation on high temperature properties for bismuth layer structured piezoelectric ceramics and the sensors of the ceramics. Electronic Components and Materials, 2002, 21(5): 11-13.[43] LIN D M, XIAO D Q, ZHU J G, et al. Rearches and progresses of bismuth layer-based lead-free piezoelectric ceramics. Journal of Functional Materials, 2003, 34(3): 491-495.[44] PARK B H, KANG B S, BU S D, et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999, 401(6754): 682-684.[45] CHON U, JANG H M, KIM M G, et al. Layered perovskites with giant spontaneous polarizations for nonvolatile memories. Physical Review Letters, 2002, 89(8): 087601.[46] ZHU J S, SU D, LU X M, et al. La-doped effect on the ferroelectric properties of Bi4Ti3O12-SrBi4Ti4O15 thin film fabricated by pulsed laser deposition. Journal of Applied Physics, 2002, 92(9): 5420-5424.[47] CHON U, SHIM J S, JANG H M. Ferroelectric properties and crystal structure of praseodymium-modified bismuth titanate. Journal of Applied Physics, 2003, 93(8): 4769-4775.[48] HUANOSTA-TERA A, CASTANEDA-GUZMAN R, PINEDA- FLORES J L. Characterization of Bi4-xRxTi3O12 (Rx = Pr, Nd, Gd, Dy, x=0.8) layered electroceramics by a photoacoustic method. Materials Research Bulletin, 2003, 38(6): 1073-1079.[49] CHEN M, LIU Z L, WANG Y, et al. Ferroelectric properties and microstructures of Sm-doped Bi4Ti3O12 ceramics. Physica B-Condensed Matter, 2004, 352(1-4): 61-65.[50] GARG A, SNEDDEN A, LIGHTFOOT P, et al. Investigation of structural and ferroelectric properties of pulsed-laser-ablated epitaxial Nd-doped bismuth titanate films. Journal of Applied Physics, 2004, 96(6): 3408-3412.[51] SIMOES A Z, RIES A, FILHO F M, et al. Fatigue-free behavior of Bi3.25La0.75Ti3O12 thin films grown on several bottom eletrodes by the polymeric precursor method. Applied Physics Letters, 2004, 85(24): 5962-5964.[52] WATANABE T, KOJIMA T, UCHIDA H, et al. Spontaneous polarization of neodymium-substituted Bi4Ti3O12 estimated from epitaxially grown thin films with in-plane c-axis orientations. Japanese Journal of Applied Physics, 2004, 43(2B): L309-L311.[53] ZENG J T, LI Y X, WANG D, et al. Electrical properties of neodymium doped CaB4Ti4O15 ceramics. Solid State Communications, 2005, 133(9): 553-557.[54] YI Z G, LI Y X, ZENG J T, et al. Lanthanum distribution and dielectric properties of intergrowth Bi5-xLaxTiNbWO15 ferroelectrics. Applied Physics Letters, 2005, 87(20): 202901.[55] YI Z G, LI Y X, WANG Y, et al. Dielectric and ferroelectric properties of intergrowth Bi7-xLaxTi4NbO21 ceramics. Applied Physics Letters, 2006, 88(15): 152909.[56] GE W Y, ZHU W L, HIGASHINO M, et al. Spectrally resolved microprobe cathodoluminescence of intergrowth Bi5-xLaxTiNbWO15 ferroelectrics. Journal of Applied Physics, 2007, 102(7): 076106.[57] YI Z G, LI Y X, ZENG J T, et al. Structure and dielectric properties of Bi5-xLaxNb3O15 ceramics. Journal of Electroceramics, 2008, 21(1-4): 319-322.[58] SHAO C W, LU Y Q, WANG D, et al. Effect of Nd substitution on the microstructure and electrical properties of Bi7Ti4NbO21 piezoceramics. J. Eur. Ceram. Soc., 2012, 32(14): 3781-3789.[59] ZONG L C, ZENG J T, ZHAO S C, et al. Study on A-site cation doping of CaBi2Nb2O9 with Bismuth layered structure. Journal of Inorganic Materials, 2012, 27(7): 726-730.[60] WANG C B, FU L, SHEN Q, et al. Effect of Ho doping on structure and ferroelectric property of Bi4-xHoxTi3O12 ceramics. Journal of Inorganic Materials, 2012, 27(7): 721-725.[61] YAU C Y, PALAN R, TRAN K, et al. Mechanism of polarization enhancement in la-doped Bi4Ti3O12 films. Applied Physics Letters, 2005, 86(3): 032907.[62] JIANG X P, WEN J X, CHEN C, et al. Piezoelectric properties of Mn-modified Na0.5Bi2.5Nb2O9 for high temperature applications. Journal of Inorganic Materials, 2012, 27(8): 827-832.[63] CU D G, LI G R, ZHENG L Y, et al. Electrical properties of mn-modified CaBi4Ti4O15 piezoelectrics for high temperature application. Journal of Inorganic Materials, 2008, 23(3): 626-630.[64] PARK B H, HYUN S J, BU S D, et al. Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Applied Physics Letters, 1999, 74(13): 1907-1909.[65] SHULMAN H S, TESTORF M, DAMJANOVIC D, et al. Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate. J. Am. Ceram. Soc., 1996, 79(12): 3124-3128.[66] NOGUCHI Y, MIYAYAMA M. Large remanent polarization of vanadium-doped Bi4Ti3O12. Applied Physics Letters, 2001, 78(13): 1903-1905.[67] BAO Z H, YAO Y Y, ZHU J S, et al. Study on ferroelectric and dielectric properties of niobium doped Bi4Ti3O12 ceramics and thin films prepared by PLD method. Materials Letters, 2002, 56(5): 861-866.[68] WANG X S, ISHIWARA H. Polarization enhancement and coercive field reduction in W- and Mo-doped Bi3.35La0.75Ti3O12 thin films. Applied Physics Letters, 2003, 82(15): 2479-2481.[69] VILLEGAS M, JARDIEL T, FARIAS G. Sintering and electrical properties of Bi4Ti2.95WxO11.9+3x piezoelectric ceramics. J. Eur. Ceram. Soc., 2004, 24(6): 1025-1029.[70] JIANG X P, YANG Q, CHEN C, et al. Nb-modified Bi4Ti3O12 piezoelectric for high temperature applications. Journal of Inorganic Materials, 2010, 25(11): 1169-1174.[71] KORZUNOVA L V, SHEBANOV L A. New perovskite-like high-temperature ferroelectrics. Ferroelectrics, 1989, 93: 111-115.[72] UCHIDA H, YOSHIKAWA H, OKADA I, et al. Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd3+/V5+ cosubstitution. Applied Physics Letters, 2002, 81(12): 2229-2231.[73] WATANABE T, FUNAKUBO H, SAITO K, et al. Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12- based thin films with long-range lattice matching. Applied Physics Letters, 2002, 81(9): 1660-1662.[74] WATANABE T, KOJIMA T, SAKAI T, et al. Large remanent polarization of Bi4Ti3O12-based thin films modified by the site engineering technique. Journal of Applied Physics, 2002, 92(3): 1518-1521.[75] LI W, YIN Y, SU D, et al. Ferroelectric properties of polycrystalline bismuth titanate films by Nd3+/W6+ cosubstitution. Journal of Applied Physics, 2005, 97(8): 084102.[76] NOGUCHI Y, MIYAYAMA M, KUDO T. Ferroelectric properties of intergrowth Bi4Ti3O12-SrBi4Ti4O15 ceramics. Applied Physics Letters, 2000, 77(22): 3639-3641.[77] YI Z G, WANG Y, LI Y X, et al. Ferroelectricity in intergrowth Bi3TiNbO9-Bi4Ti3O12 ceramics. Journal of Applied Physics, 2006, 99(11): 114101.[78] TAKENAKA T, SAKATA K. Grain-orientation and electrical- properties of hot-forged Bi4Ti3O12 ceramics. Japanese Journal of Applied Physics, 1980, 19(1): 31-39.[79] TAKENAKA T, SAKATA K. Grain-orientation effects on electrical-properties of bismuth layer-structured ferroelectric Pb1-x(NaCe)0.5xBi4Ti4O15 solid-solution. Journal of Applied Physics, 1984, 55(4): 1092-1099.[80] FUIERER P A, NICHTAWITZ A. Electric Field Assisted Hot Forging of Bismuth Titanate. Isaf '94-Proceedings of the Ninth Ieee International Symposium on Applications of Ferroelectrics, Penn state Univ, 1994: 126-129.[81] SHEN Z J, LIU J, GRINS J, et al. Effective grain alignment in Bi4Ti3O12 ceramics by superplastic-deformation-induced directional dynamic ripening. Advanced Materials, 2005, 17(6): 676-680.[82] CHEN W W, HOTTA Y, TAMURA T, et al. Effect of suction force and starting powders on microstructure of Bi4Ti3O12 ceramics prepared by magnetic alignment via slip casting. Scripta Materialia, 2006, 54(12): 2063-2068.[83] CHEN W W, KINEMUCHI Y, WATARI K, et al. Grain-oriented Bi4Ti3O12 ferroelectric ceramics prepared by magnetic alignment. J. Am. Ceram. Soc., 2006, 89(2): 490-493.[84] TAKEUCHI T, TANI T, SAITO Y. Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Japanese Journal of Applied Physics, 1999, 38(9B): 5553-5556.[85] TAKEUCHI T, TANI T, SAITO Y. Unidirectionally textured CaBi4Ti4O15 ceramics by the reactive templated grain growth with an extrusion. Japanese Journal of Applied Physics, 2000, 39(9B): 5577-5580.[86] DURAN C, TROLIER-MCKINSTRY S, MESSING G L. Dielectric and piezoelectric properties of textured Sr0.53Ba0.47Nb2O6 ceramics prepared by templated grain growth. Journal of Materials Research, 2002, 17(9): 2399-2409.[87] ZENG J T, LI Y X, YANG Q B, et al. Grain oriented CaBi4Ti4O15 piezoceramics prepared by the screen-printing multilayer grain growth technique. J. Eur. Ceram. Soc., 2005, 25(12): 2727-2730.[88] WU M J, YANG Q B, LI Y X. Application of texture techniques to enhanced lead-free piezoceramics. Journal of Inorganic Materials, 2007, 22(6): 1025-1031.[89] WINTER M R, DIANTONIO C B, YANG P, et al. Screen printing to achieve highly textured Bi4Ti3O12. J. Am. Ceram. Soc., 2010, 93(7): 1922-1926.[90] SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004, 432(7013): 84-87.[91] DU H L, LI Z M, ZHOU W C, et al. Researches and developments of (Na0.5K0.5)NbO3-based lead-free piezoelectric ceramics. Journal of Inorganic Materials, 2006, 21(6): 1281-1291.[92] LI Y L, HUI C, LI Y X, et al. Enhanced ferroelectric and piezoelectric properties of textured K0.45Na0.55NbO3 ceramics prepared by screen-printing technique. Journal of Inorganic Materials, 2012, 27(2): 214-218.[93] Wu M J, Li Y X. Topochemical synthesis of plate-like Na0.5Bi0.5TiO3 templates from Bi4Ti3O12. Materials Letters, 2010, 64(10): 1157-1159.[94] WU M J, LI Y X, WANG D, et al. Highly textured (Na1/2Bi1/2)0.94Ba0.06TiO3 ceramics prepared by the screen-printing multilayer grain growth technique. Ceramics International, 2008, 34(4): 753-756.[95] TAKEI W J, FORMIGON N P, Francomb M h. Preparation and epitaxy of sputtered films of ferroelectric Bi4Ti3O12. Journal of Vacuum Science & Technology, 1970, 7(3): 442-448.[96] SUGIBUCHI K, KUROGI Y, ENDO N. Ferroelectric field-effect memory device using Bi4Ti3O12 Film. Journal of Applied Physics, 1975, 46(7): 2877-2881.[97] WU S Y. Polarization reversal and film structure in ferroelectric Bi4Ti3O12 films deposited on silicon. Journal of Applied Physics, 1979, 50(6): 4314-4318.[98] DE ARAUJO C A P, CUCHIARO J D, MCMILLAN L D, et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature, 1995, 374(6523): 627-629.[99] DING Y, LIU J S, WANG Y N. Transmission electron microscopy study on ferroelectric domain structure in SrBi2Ta2O9 ceramics. Applied Physics Letters, 2000, 76(1): 103-105.[100] DING Y, LIU J S, MACLAREN I, et al. Ferroelectric switching mechanism in SrBi2Ta2O9. Applied Physics Letters, 2001, 79(7): 1015-1017.[101] DING Y, LIU J S, QIN H X, et al. Why lanthanum-substituted bismuth titanate becomes fatigue free in a ferroelectric capacitor with platinum electrodes. Applied Physics Letters, 2001, 78(26): 4175-4177.[102] SU D, ZHU J S, WANG Y N, et al. Different domain structures and their effects on fatigue behavior in Bi3TiTaO9 and SrBi2Ta2O9 ceramics. Journal of Applied Physics, 2003, 93(8): 4784-4787.[103] ISHIKAWA K, FUNAKUBO H. Electrical properties of (001)- and (116)-oriented epitaxial SrBi2Ta2O9 thin films prepared by metalorganic chemical vapor deposition. Applied Physics Letters, 1999, 75(13): 1970-1972.[104] LEE H N, SENZ S, ZAKHAROV N D, et al. Growth and characterization of non-c-oriented epitaxial ferroelectric SrBi2Ta2O9 films on buffered Si(100). Applied Physics Letters, 2000, 77(20): 3260-3262.[105] LEE H N, VISINOIU A, SENZ S, et al. Structural and electrical anisotropy of (001)-, (116)-, and (103)-oriented epitaxial SrBi2Ta2O9 thin films on SrTiO3 substrates grown by pulsed laser deposition. Journal of Applied Physics, 2000, 88(11): 6658-6664.[106] LETTIERI J, ZURBUCHEN M A, JIA Y, et al. Epitaxial growth of non-c-oriented SrBi2Nb2O9 on (111) SrTiO3. Applied Physics Letters, 2000, 76(20): 2937-2939.[107] LEE H N, ZAKHAROV D N, SENZ S, et al. Epitaxial growth of ferroelectric SrBi2Ta2O9 thin films of mixed (100) and (116) orientation on SrLaGaO4(110). Applied Physics Letters, 2001, 79(18): 2961-2963.[108] MOON S E, SONG T K, BACK S B, et al. Controlled growth of a-/b- and c-axis oriented epitaxial SrBi2Ta2O9 ferroelectric thin films. Applied Physics Letters, 1999, 75(18): 2827-2829.[109] LEE H N, HESSE D, ZAKHAROV N, et al. Ferroelectric Bi3.25La0.75Ti3O12 films of uniform a-axis orientation on silicon substrates. Science, 2002, 296(5575): 2006-2009.[110] MAO X Y, WANG W, CHEN X B. Electrical and magnetic properties of Bi5FeTi3O15 compound prepared by inserting BiFeO3 into Bi4Ti3O12. Solid State Communications, 2008, 147(5/6): 186-189.[111] HU X, WANG W, MAO X Y, et al. Magnetic and electric properties of Co-doped Bi5Ti3FeO15 multiferroic ceramics. Acta Physica Sinica, 2010, 59(11): 8160-8166.[112] MAO X, WANG W, SUN H, et al. Influence of different synthesizing steps on the multiferroic properties of Bi5FeTi3O15 and Bi5Fe0.5Co0.5Ti3O15 ceramics. Journal Of Materials Science, 2012, 47(6): 2960-2965.[113] WANG W, HU X, MAO X Y, et al. Ferromagnetism in the multiferroic Bi5FeTi3O15 ceramics Arising from the magnetic coupling. Journal of Inorganic Materials, 2010, 25(12): 1263-1267.[114] SUN H, LU X, XU T, et al. Study of multiferroic properties in Bi5Fe0.5Co0.5Ti3O15 thin films. Journal of Applied Physics, 2012, 111(12): 124116.[115] YANG F J, SU P, WEI C, et al. Large magnetic response in (Bi4Nd)Ti3(Fe0.5Co0.5)O15 ceramic at room-temperature. Journal of Applied Physics, 2011, 110(12): 126102.[116] MAO X, SUN H, WANG W, et al. Ferromagnetic, ferroelectric properties, and magneto-dielectric effect of Bi4.25La0.75Fe 0.5Co0.5Ti3O15 ceramics. Applied Physics Letters, 2013, 102(7): 072904.[117] CHOI W S, CHISHOLM M F, SINGH D J, et al. Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat Commun, 2012, 3(689): 1-6.[118] LINES M E, GLASS A M. Principles and Applications of Ferroelectric and Related Materials, Oxford, London: Oxford University, 1977: 580-585.[119] CHOI T, LEE S, CHOI Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324(5923): 63-66.[120] HUANG H. Solar energy: ferroelectric photovoltaics. Nat. Photon., 2010, 4(3): 134-135.[121] YANG S Y, SEIDEL J, BYRNES S J, et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nano., 2010, 5(2): 143-147.[122] SEIDEL J, FU D, YANG S Y, et al. Efficient photovoltaic current generation at ferroelectric domain walls. Physical Review Letters, 2011, 107(12): 126805.[123] YUAN Y, REECE T J, SHARMA P, et al. Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater., 2011, 10(4): 296-302.[124] CHOI W S, LEE H N. Band gap tuning in ferroelectric Bi4Ti3O12 by alloying with LaTMO3 (TM = Ti, V, Cr, Mn, Co, Ni, and Al). Applied Physics Letters, 2012, 100(13): 132903.[125] 殷之文. 电介质物理学. 北京: 科学出版社, 2003: 829-832.[126] LIU F, LU Y Q, LI Y X. First-principles study of intergrowth bismuth layer-structured ferroelectric Bi7Ti4NbO21. Journal of Inorganic Materials, 2014, 29(1): 38-42. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. |
[4] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[5] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[6] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[7] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||