Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (2): 113-123.DOI: 10.3724/SP.J.1077.2014.10003
• Invited Review • Next Articles
GUO Xiang-Xin1, HUANG Shi-Ting1, ZHAO Ning1, CUI Zhong-Hui1, FAN Wu-Gang1, LI Chi-Lin1, LI Hong2
Received:2013-09-03
Revised:2013-09-17
Published:2014-02-20
Online:2014-01-17
CLC Number:
GUO Xiang-Xin, HUANG Shi-Ting, ZHAO Ning, CUI Zhong-Hui, FAN Wu-Gang, LI Chi-Lin, LI Hong. Rapid Development and Critical Issues of Secondary Lithium-air Batteries[J]. Journal of Inorganic Materials, 2014, 29(2): 113-123.
Add to citation manager EndNote|Ris|BibTeX
| [1] Girishkumar G, McCloskey B, Luntz A C, et al. Lithium-air battery: promise and challenges. J. Phys. Chem. Lett., 2010, 1(14): 2193–2203.[2] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage. Nat. Mater., 2012, 11(1): 19-29.[3] Zu C X, Li H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci., 2011, 4(8): 2614–2624.[4] Kinoshita K. Metal/Air Batteries. In Electrochemical Oxygen Technology; Kinoshita, K., Ed.; John Wiley & Sons, Inc.: New York, 1992: 259–306.[5] Abraham K M, Jiang Z. A Polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc., 1996, 143(1): 1–5.[6] Ogasawara T, Debart A, Bruce P G, et al. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc., 2006, 128(4): 1390–1393.[7] Kraytsberg A, Ein-Eli Y. Review on Li-air batteries-opportunities, limitations and perspective. J. Power Sources, 2011, 196(3): 886–893.[8] Shao Y Y, Park S, Xiao J, et al. Electrocatalysts for nonaqueous lithium-air batteries: status, challenges, and perspective. ACS Catal., 2012, 2(5): 844–857.[9] Shao Y Y, Ding F, Xiao J, et al. Making Li-air batteries rechargeable: Materials challenges. Adv. Funct. Mater., 2013, 23(8): 987–1004.[10] Christensen J, Albertus P, Sanchez-Carrera R S, et al. A critical review of Li/air batteries. J. Electrochem. Soc., 2012, 159(2): R1-R30.[11] Black R, Adams B, Nazar L F. Non-aqueous and hybrid Li-O2 batteries. Adv. Energy Mater., 2012, 2(7): 801–815.[12] Li F, Zhang T, Zhou H. Challenges of non-aqueous Li-O2 batteries: electrolytes, catalysts, and anodes. Energy Environ. Sci., 2013, 6(4): 1125–1141.[13] Mizuno F, Nakanishi S, Kotani Y, et al. Rechargeable Li-air batteries with carbonate-based liquid electrolytes, Electrochemistry, 2010, 78(5): 403–405.[14] Freunberger S A, Chen Y H, Bruce P G, et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc., 2011, 133(20): 8040-8047.[15] McCloskey B D, Bethune D S, Luntz A C, et al. Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett., 2011, 2(10): 1161–1166.[16] Laoire C ?, Plichta E J, Abraham K M, et al. Rechargeable lithium/ TEGDME-LiPF6/O2 battery. J. Electrochem. Soc., 2011, 158(3): A302–A308.[17] Lu Y C, Kwabi D G, Yang S H. The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci., 2011, 4(8): 2999–3007.[18] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc., 2012, 134(6): 2902–2905.[19] Takechi K, Higashi S, Mizuno F, et al. Stability of solvents against superoxide radical species for the electrolyte of lithium-air battery. ECS Electrochem. Lett., 2012, 1(1): A27–A29.[20] Chen Y, Freunberger S A, Peng Z, et al. The Li-O2 battery with a dimethylformamide electrolyte. J. Am. Chem. Soc., 2012, 134(18): 7952–7957.[21] Freunberger S A, Chen Y, Drewett N E, et al. The lithium–oxygen battery with ether-based electrolytes. Angew. Chem. Int. Ed., 2011, 50(37): 8609–8613.[22] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J. Am. Chem. Soc., 2011, 133(45): 18038–18041.[23] Barile C J, Gewirth A A. Investigating the Li-O2 battery in an ether-based electrolyte using differential electrochemical mass spectrometry. J. Electrochem. Soc., 2013, 160(4): A549–A552. [24] Veith G M, Dudney N J, Howe J, et al. Spectroscopic characterization of solid discharge products in li-air cells with aprotic carbonate electrolytes. J. Phys. Chem. C, 2011, 115(29): 14325–14333.[25] Lim H D, Park K Y, Gwon H, et al. The potential for long-term operation of a lithium-oxygen battery using a non-carbonate-based electrolyte. Chem. Commun., 2012, 48(67): 8374–8376.[26] Wang H, Liao X Z, Li L, et al. Rechargeable Li/O2 Cell based on a LiTFSI-DMMP/PFSA-Li composite electrolyte. J. Electrochem. Soc., 2012, 159(11): A1874–A1879.[27] Xu D, Wang Z L, Xu J J, et al. Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. Chem. Commun., 2012, 48(55): 6948–6950. [28] Jung H G, Kim H S, Park J B, et al. A Transmission electron microscopy study of the electrochemical process of lithium-oxygen cells. Nano Lett., 2012, 12(8): 4333?4335.[29] Mitchell R R, Gallant B M, Shao-Horn Y, et al. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett., 2013, 4(7): 1060–1064.[30] Qiao R, Chuang Y D, Yan S, et al. Soft X-ray irradiation effects of Li2O2, Li2CO3 and Li2O revealed by absorption spectroscopy. PLoS ONE 7(11):e49182. doi:10.1371/journal.pone.0049182.[31] Karan N K, Balasubramanian M, Fister T T, et al. Bulk sensitive characterization of the discharged products in Li-O2 batteries by nonresonant Inelastic X-ray scattering. J. Phys. Chem. C, 2012, 116(34): 18132–18138.[32] Ryan K R, Trahey L, Okasinski J S, et al. In situ synchrotron X-ray diffraction studies of lithium oxygen batteries. J. Mater. Chem. A, 2013, 1(23): 6915-6919.[33] Lu Y C, Crumlin E J, Veith G M, et al. In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Scientific Reports, 2012, 2(715), doi: 10.1038/ srep00715.[34] Wen R, Hong M, Byon H R, In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. J. Am. Chem. Soc., 2013, 135(29): 10870–10876.[35] Fan W G, Cui Z H, Guo X X. Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li-O2 cells. J. Phys. Chem. C, 2013, 117(6): 2623–2627.[36] Cui Z H, Fan W G, Guo X X. Lithium-oxygen cells with ionic-liquid-based electrolytes and vertically aligned carbon nanotube cathodes. J. Power Source, 2013, 235: 251-255.[37] Gallant B M, Mitchell R R, Kwabi D G, et al. Chemical and morphological changes of Li-O2 battery electrodes upon cycling. J. Phys. Chem. C, 2012, 116(39): 20800-20805.[38] Black R, Oh S H, Lee J H, et al. Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc., 2012, 134(6): 2902–2905.[39] Guo X X, Zhao N. The role of charge reactions in cyclability of lithium-oxygen batteries. Adv. Energy Mater., 2013, 3(11): 1413–1416.[40] Jung H G, Hassoun J, Park J B, et al. An improved high-performance lithium–air battery. Nature Chem., 2012, 4(7): 579–585.[41] Black R, Lee J H, Adams B, et al. The role of catalysts and peroxide oxidation in lithium–oxygen batteries. Angew. Chem. Int. Ed., 2013, 52(1): 392–396.[42] Mitchell R R, Gallant B M, Shao-Horn Y, et al. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett. , 2013, 4(7): 1060–1064.[43] Radin M D, Rodriguez J F, Tian F, et al. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J. Am. Chem. Soc., 2012, 134(2): 1093–1103.[44] Garcia-Lastra J M, Myrdal J S G, Christensen R, et al. DFT+U study of polaronic conduction in Li2O2 and Li2CO3: implications for Li-air batteries. J. Phys. Chem. C, 2013, 117(11): 5568–5577.[45] Gerbig O, Merkle R, Maier J. Electron and ion transport in Li2O2. Adv. Mater. 2013, 25(22): 3129–3133.[46] Adams B D, Radtke C, Black R, et al. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ. Sci., 2013, 6: 1772–1778.[47] Zhong L, Mitchell R R, Liu Y, et al. In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Lett., 2013, 13(5): 2209–2214.[48] Thotiyl M M O, Freunberger S A, Peng Z, et al. The carbon electrode in non-aqueous Li-O2 cells. J. Am. Chem. Soc., 2013, 135(1): 494–500.[49] Gowda S R, Brunet A, Wallraff G M, et al. Implications of CO2 contamination in rechargeable non-aqueous Li-O2 batteries. J. Phys. Chem. Lett., 2013, 4(2): 276–279.[50] Peng Z, Freunberger S A, Chen Y, et al. A reversible and higher-rate Li-O2 battery. Science, 2012, 337(6094): 563–566.[51] Li F J, Zhang T, Yamada Y, et al. Enhanced cycling performance of Li-O2 batteries by the optimized electrolyte concentration of LiTFSA in glymes. Adv. Energy Mater. 2013, 3(4): 532–538.[52] Chen Y H, Freunberger S A, Peng Z Q, et al. Charging a Li-O2 battery using a redox mediator. Nat. Chem. 2013, 5(6): 489–494.[53] Mizuno F, Nakanishi S, Shirasawa A, et al. Design of non-aqueous liquid electrolytes for rechargeable Li-O2 batteries. Electrochem. 2011, 79(11): 876–881.[54] Soavi F, Monaco S, Mastragostino M. Catalyst-free porous carbon cathode and ionic liquid for high efficiency, rechargeable Li/O2 battery. J. Power Sources, 2013, 224: 115–119. [55] Yu X Q, He Y, Sun J P, et al. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem. Commun., 2009, 11(4): 791–794.[56] Cui Z H, Guo X X, Li H. High performance MnO thin-film anodes grown by radio-frequency sputtering for lithium ion batteries. J. Power Sources, 2013, 244: 731–735.[57] Cui Z H, Guo X X, Li H. Improved electrochemical properties of MnO thin film anodes by elevated deposition temperatures: Study of conversion reactions. Electrochimica Acta, 2013, 89: 229–238.[58] Ogasawara T, Debart A, Holzapfel M, et al. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc., 2006, 128(4): 1390–1393.[59] Debart A, Bao J I, Armstrong G, et al. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources, 2007, 174(2): 1177-1182.[60] Lu Y C, Xu Z C, Gasteiger H A, et al. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium- air batteries. J. Am. Chem. Soc., 2010, 132(35): 12170–12171.[61] Debart A, Paterson A J, Bao J I, et al. α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed., 2008, 47(24): 4521–4524.[62] Lu Y C, Gasteiger H A, Parent M C, et al. The influence of catalysts on discharge and charge voltage of rechargeable Li-oxygen batteries. Electrochem. Solid State Lett., 2010, 13(6): A69–A72.[63] Trahey L, Johnson C S, Bruce P G, et al. Activated lithium- metal-oxides as catalytic electrodes for Li-O2 cells. Electrochem. Solid State Lett., 2011, 14(5): A64–A66. [64] Xiao J; Wang D H, Xu W, et al. Optimization of air electrode for Li/Air batteries. J. Electrochem. Soc., 2010, 157(4): A487?A492.[65] Yang X H, He P, Xia Y Y. Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem. Commun., 2009, 11(6): 1127?1130.[66] Yang Y, Sun Q, Li Y S, et al. Nanostructured diamond like carbon thin film electrodes for lithium air batteries. J. Electrochem. Soc., 2011, 158 (10): B1211–B1216.[67] Dong S M, Chen X, Wang S, et al. 1D coaxial platinum/titanium nitride nanotube arrays with enhanced electrocatalytic activity for the oxygen reduction reaction: towards Li-air batteries. ChemSusChem, 2012, 5(9): 1712–1715.[68] Cui Y M, Wen Z Y, Sun S J, et al. Mesoporous Co3O4 with different porosities as catalysts for the lithium-oxygen cell. Solid State Ionics, 2012, 225(SI): 598–603.[69] Xu J J, Xu D, Wang Z L, et al. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium oxygen batteries. Angew. Chem. Int. Ed., 2013, 52(14): 3887–3890.[70] He P, Wang Y G, Zhou H S. Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution. Chem. Comm., 2011, 47: 10701–10703.[71] Lu Y, Wen Z Y, Jin J, et al. Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery. J. Solid State Electr., 2012, 16(5): 1863–1868.[72] Zhao Y L, Xu L, Mai L Q, et al. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. P. Natl. Acad. Sci. USA., 2012, 109(48): 19569–19574.[73] Fu Z H, Lin X J, Huang T, et al. Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries. J. Solid State Electr., 2012, 16(4): 1447–1452.[74] Wang H, Liao X Z, Jiang Q Z, et al. A novel Co(phen)(2)/C catalyst for the oxygen electrode in rechargeable lithium air batteries. Chinese Sci. Bull., 2012, 57(16): 1959–1963.[75] Oh S H, Black R, Pomerantseva E, et al. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries. Nat. Chem., 2012, 4(12): 1004–1010.[76] McCloskey B D, Scheffler R, Speidel A, et al. On the efficacy of electrocatalysis in non-aqueous Li-O2 batteries. J. Am. Chem. Soc., 2011, 133(45): 18038–18041.[77] McCloskey B D, Scheffler R, Speidel A, et al. On the mechanism of nonaqueous Li-O2 electrochemistry on C and its kinetic overpotentials: some implications for Li-air batteries. J. Phys. Chem. C, 2012, 116(45): 23897–23905.[78] Lu Y C, Shao-Horn Y. Probing the reaction kinetics of the charge reactions of nonaqueous Li?O2 batteries. J. Phys. Chem. Lett., 2013, 4(1):93–99.[79] Wang R, Yu X Q, Bai J M, Li H, et al. Electrochemical decomposition of Li2CO3 in NiO-Li2CO3 nanocomposite thin ?lm and powder electrodes. J. Power Source, 2012, 218: 113–118.[80] Zhang T, Zhou H. A reversible long-life lithium-air battery in ambient air. Nat. Commun., 2013, 4: 1817–1823.[81] Lim H K, Lim H D, Park K Y, et al. Toward a lithium-‘air’ battery: The effect of CO2 on the chemistry of a lithium-oxygen cell. J. Am. Chem. Soc., 2013, 135(26): 9733–9742. |
| [1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| [2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
| [3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
| [4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
| [5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
| [6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
| [7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
| [8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
| [9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
| [10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
| [11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
| [12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
| [13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
| [14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
| [15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||