Journal of Inorganic Materials ›› 2011, Vol. 26 ›› Issue (5): 449-457.DOI: 10.3724/SP.J.1077.2011.00449
• Review • Next Articles
CHEN Xue-Gang1, YE Ying1, CHENG Ji-Peng2
Received:2010-08-12
Revised:2010-10-29
Published:2011-05-20
Online:2011-06-07
Supported by:Fundamental Research Funds for the Central Universities
CLC Number:
CHEN Xue-Gang, YE Ying, CHENG Ji-Peng. Recent Progress in Electromagnetic Wave Absorbers[J]. Journal of Inorganic Materials, 2011, 26(5): 449-457.
Add to citation manager EndNote|Ris|BibTeX
| [1] Giannakopoulou T, Kompotiatis L, Kontogeorgakos A, et al. Microwave behavior of ferrites prepared via Sol-Gel method. J. Magn. Magn. Mater., 2002, 246(3): 360-365.[2] Cao M, Qin R, Qiu C, et al. Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Mater. Design, 2003, 24(5): 391-396.[3] Stein E R, Park J S. The EMI shielding of polypyrrole impregnated polymer composites. Polym. Composite, 1991, 12(4): 289.[4] Phang S W, Daik R, Abdullah M H. Poly (4, 4'-diphenylene diphenylvinylene) as a non-magnetic microwave absorbing conjugated polymer. Thin Solid Films, 2005, 477(1/2): 125-130.[5] Lee W, Lee J, Kim C. Characteristics of an electromagnetic wave absorbing composite structure with a conducting polymer electromagnetic bandgap (EBG) in the X-band. Compos. Sci. Technol., 2008, 68(12): 2485-2489.[6] Huo J, Wang L, Yu H. Polymeric nanocomposites for electromagnetic wave absorption. J. Mater. Sci., 2009, 44(15): 3917-3927.[7] Wen B, Zhao J, Duan Y, et al. Electromagnetic wave absorption properties of carbon powder from catalysed carbon black in X and Ku bands. J. Phys. D Appl. Phys., 2006, 39(9): 1960-1962.[8] Tang N, Zhong W, Au C, et al. Synthesis, microwave electromagnetic, and microwave absorption properties of twin carbon nanocoils. J. Phys. Chem. C, 2008, 112(49): 19316-19323.[9] Thomassin J, Huynen I, Jerome R, et al. Functionalized polypropylenes as efficient dispersing agents for carbon nanotubes in a polypropylene matrix; application to electromagnetic interference (EMI) absorber materials. Polymer, 2010, 51(1): 115-121.[10] Zhu H, Zhang L, Zhang L, et al. Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing. Mater. Lett., 2010, 64(3): 227-230.[11] Cao M S, Song W L, Hou Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/ silica composites. Carbon, 2010, 48(3): 788-796.[12] Park K, Han J, Lee S, et al. Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles. Compos. Sci. Technol., 2009, 69(7/8): 1271-1278.[13] Shen G, Xu Z, Li Y. Absorbing properties and structural design of microwave absorbers based on W-type La-doped ferrite and carbon fiber composites. J. Magn. Magn. Mater., 2006, 301(2): 325-330.[14] Liu Q, Zhang D, Fan T. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett., 2008, 93(1): 13110-1-3.[15] Han Z, Li D, Wang H, et al. Broadband electromagnetic-wave absorption by FeCo/C nanocapsules. Appl. Phys. Lett., 2009, 95(2): 23114-1-3.[16] Zhao D, Li X, Shen Z. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes. J. Alloy. Compd., 2009, 471(1/2): 457-460.[17] Gui X, Ye W, Wei J, et al. Optimization of electromagnetic matching of Fe-filled carbon nanotubes/ferrite composites for microwave absorption. J. Phys. D Appl. Phys., 2009, 42(7): 075002.[18] Zhao D, Li X, Shen Z. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ag nanowires. Mater. Sci. Eng. B, 2008, 150(2): 105-110.[19] Song W, Cao M, Hou Z, et al. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scripta Mater., 2009, 61(2): 201-204.[20] Zhang L, Zhu H, Song Y, et al. The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3 nanoparticles as microwave absorbers. Mater. Sci. Eng. B, 2008, 153(1/2/3): 78-82.[21] Mouchon E, Colomban P. Microwave absorbent: preparation, mechanical properties and rf-microwave conductivity of SiC (and/or mullite) fibre reinforced Nasicon matrix composites. J. Mater. Sci., 1996, 31(2): 323-334.[22] Kagawa Y, Matsumura K, Iba H, et al. Potential of short Si-Ti- C-O fiber-reinforced epoxy matrix composite as electromagnetic wave absorbing material. J. Mater. Sci., 2007, 42(4): 1116-1121.[23] 梁彤祥, 赵宏生, 张 岳(LIANG Tong-Xiang, et al). SiC/CNTs纳米复合材料吸波性能的研究. 无机材料学报 (Journal of Inorganic Materials), 2006, 21(3): 659-663.[24] Jin H, Cao M, Zhou W, et al. Microwave synthesis of Al-doped SiC powders and study of their dielectric properties. Mater. Res. Bull., 2010, 45(2): 247-250.[25] Zou G, Cao M, Lin H, et al. Nickel layer deposition on SiC nanoparticles by simple electroless plating and its dielectric behaviors. Powder Technol., 2006, 168(2): 84-88.[26] Sugimoto S, Haga K, Kagotani T, et al. Microwave absorption properties of Ba M-type ferrite prepared by a modified coprecipitation method. J. Magn. Magn. Mater., 2005, 290-291(2): 1188-1191.[27] Shams M H, Salehi S M A, Ghasemi A. Electromagnetic wave absorption characteristics of Mg-Ti substituted Ba-hexaferrite. Mater. Lett., 2008, 62(10/11): 1731-1733.[28] Begard M, Bobzin K, Bolelli G, et al. Thermal spraying of Co,Ti-substituted Ba-hexaferrite coatings for electromagnetic wave absorption applications. Surf. Coat. Tech., 2009, 203(20/21): 3312-3319.[29] Abbas S M, Chatterjee R, Dixit A K, et al. Electromagnetic and microwave absorption properties of (Co2+-Si4+) substituted barium hexaferrites and its polymer composite. J. Appl. Phys., 2007, 101(7): 074105-1-6.[30] Sugimoto S, Maeda T, Book D, et al. GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen. J. Alloy. Compd., 2002, 330(1/2): 301-306.[31] Jian L, Guohong Y, Meiling S. Crystal microstructure, infrared absorption, and microwave electromagnetic properties of (La1-xDyx)2/3Sr1/3MnO3. Rare Metals, 2009, 28(5): 494-499.[32] Costa A C F M, Diniz A P, Silva V J, et al. Influence of calcination temperature on the morphology and magnetic properties of Ni-Zn ferrite applied as an electromagnetic energy absorber. J. Alloy. Compd., 2009, 483(1/2): 563-565.[33] Song J M, Yoon H J, Kim D I, et al. Dependence of electromagnetic wave absorption on ferrite particle size in sheet-type absorbers. J. Korean Phys. Soc., 2003, 42(5): 671-675.[34] Pullar R C, Bhattacharya A K. The synthesis and characterisation of Co2X (Ba2Co2Fe28O46) and Co2U (Ba4Co2Fe36O60) ferrite fibres, manufactured from a Sol-Gel process. J. Mater. Sci., 2001, 36(19): 4805-4812.[35] Wu K H, Ting T H, Liu C I, et al. Electromagnetic and microwave absorbing properties of Ni0.5Zn0.5Fe2O4/bamboo charcoal core-shell nanocomposites. Compos. Sci. Technol., 2008, 68(1): 132-139.[36] 熊为华. PANI/铁氧体复合型微波吸收材料的制备及吸波性能研究. 合肥: 安徽大学硕士论文, 2007.[37] Cheng Y L, Dai J M, Wu D J, et al. Electromagnetic and microwave absorption properties of carbonyl iron/La0.6Sr0.4MnO3 composites. J. Magn. Magn. Mater., 2010, 322(1): 97-101.[38] Chen Y J, Gao P, Zhu C L, et al. Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J. Appl. Phys., 2009, 106(5): 054303-1-4.[39] Tang X, Hu K. Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites. Mater. Sci. Eng. B, 2007, 139(2/3): 119-123.[40] Liu J R, Itoh M, Machida K. Magnetic and electromagnetic wave absorption properties of alpha-Fe/Z-type Ba-ferrite nanocomposites. Appl. Phys. Lett., 2006, 88(6): 062503-1-3.[41] Yu X, Zhang X, Huahui L, et al. Simulation and design for stratified iron fiber absorbing materials. Mater. Design, 2002, 23(1): 51-57.[42] Marin P, Cortina D, Hernando A. Electromagnetic wave absorbing |
| [1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| [2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
| [3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
| [4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
| [5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
| [6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
| [7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
| [8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
| [9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
| [10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
| [11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
| [12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
| [13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
| [14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
| [15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||