Journal of Inorganic Materials ›› 2011, Vol. 26 ›› Issue (5): 458-466.DOI: 10.3724/SP.J.1077.2011.00458
• Review • Previous Articles Next Articles
CAO Shao-Wen, ZHU Ying-Jie, WANG Ke-Wei, CHEN Feng, CHENG Guo-Feng, HUANG Yue-Hong
Received:2010-09-06
Revised:2010-11-13
Published:2011-05-20
Online:2011-06-07
Supported by:Shanghai Science and Technology R&D Fund (1052nm06200, 0852nm05800)
CLC Number:
CAO Shao-Wen, ZHU Ying-Jie, WANG Ke-Wei, CHEN Feng, CHENG Guo-Feng, HUANG Yue-Hong. Preparation, Characterization and Application of Hollow Microspheres Assembled with Nanocrystals of Iron Oxides[J]. Journal of Inorganic Materials, 2011, 26(5): 458-466.
Add to citation manager EndNote|Ris|BibTeX
| [1] Pailhe N, Wattiaux A, Gaudon M, et al. Impact of structural features on pigment properties of alpha-Fe2O3 hematite. J. Solid State Chem., 2008, 181(10): 2697-2704.[2] Frey N A, Peng S, Cheng K, et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev., 2009, 38(9): 2532-2542.[3] Mazellier P, Bolte M. Heterogeneous light-induced transformation of 2,6-dimethylphenol in aqueous suspensions containing goethite. J. Photochem. Photobiol. A, 2000, 132(1/2): 129-135.[4] Bandara J, Tennakone K, Kiwi J. Surface mechanism of molecular recognition between aminophenols and iron oxide surfaces. Langmuir, 2001, 17 (13): 3964-3969.[5] Andreozzi R, Caprio V, Marotta R. Iron(III) (hydr)oxide-mediated photooxidation of 2-aminophenol in aqueous solution: a kinetic study. Water Res., 2003, 37(15): 3682-3688.[6] Bandara J, Mielczarski J A, Lopez A, et al. Sensitized degradation of chlorophenols on iron oxides induced by visible light-comparison with titanium oxide. Appl. Catal. B, 2001, 34(4): 321-333.[7] Sun Z Y, Du J H, Chen H S, et al. FTIR study of nano-iron oxyhydroxides' decoloration on the azo dye. Spectrosc. Spect. Anal., 2006, 26(7): 1226-1229.[8] Zhu L P, Xiao H M, Liu X M, et al. Template-free synthesis and characterization of novel 3D urchin-like alpha-Fe2O3 superstructures. J. Mater. Chem., 2006, 16(19): 1794-1797.[9] Zhong L S, Hu J S, Liang H P, et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater., 2006, 18(18): 2426-2431.[10] Br-hler M, Georgieva R, Buske N, et al. Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett., 2006, 6 (11): 2505-2509.[11] Hu F X, Neoh K G, Kang E T. Synthesis and in vitro anti-cancer evaluation of tamoxifen-loaded magnetite/PLLA composite nanoparticles. Biomaterials, 2006, 27(33): 5725-5733.[12] Molday R S, Yen S P S, Rembaum A. Application of magnetic microspheres in labeling and separation of cells. Nature, 1977, 268(5619): 437-438.[13] Hu X L, Yu J C, Gong J M, et al. Alpha-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater., 2007, 19(17): 2324-2329.[14] 牛新书, 徐 荭, 徐甲强. 溶胶-凝胶法纳米α-Fe2O3材料的合成、结构及气敏性能. 功能材料, 200l, 32(6): 349-351.[15] Han J S, Bredow T, Davey D E, et al. The effect of Al addition on the gas sensing properties of Fe2O3-based sensors. Sens. Actuators B, 2001, 75(1/2): 18-23.[16] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templateing. Science, 1998, 282(5391): 1111-1114.[17] Breen M L, Dinsmore A D, Pink R H, et al. Sonochmically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals. Langmuir, 2001, 17(3): 903-907.[18] Dai Z F, Dahne L, Mohwald H, et al. Novel capsules with high stability and controlled premeability by hierarchic templating. Angew. Chem. Int. Ed., 2002, 41(21): 4019-4022.[19] Huang H Y, Remsen E E, Kowalewski T, et al. Nanocages derived from shell cross-linked micelle templates. J. Am. Chem. Soc., 1999, 121(15): 3805-3806.[20] Makarova O V, Ostafin A E, Miyoshi H, et al. Adsorption and encapsulation of fluorescent probes in nanoparticles. J. Phys. Chem. B, 1999, 103(43): 9080-9084.[21] Ostafin A E, Siegel M, Wang Q, et al. Fluorescence of cascade blue (TM) inside nano-sized porous shells of silicate. Microporous Mesoporous Mater., 2003, 57(1): 47-55.[22] Cao S W, Zhu Y J, Ma M Y, et al. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe2O3: preparation and potential application in drug delivery. J. Phys. Chem. C, 2008, 112(6): 1851-1856.[23] Cao S W, Zhu Y J. Hierarchically nanostructured α-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment. J. Phys. Chem. C, 2008, 112(16): 6253-6257.[24] Cao S W, Zhu Y J. Surfactant-free preparation and drug release property of magnetic hollow core/shell hierarchical nanostructures. J. Phys. Chem. C, 2008, 112(32): 12149-12156. [25] Cao S W, Zhu Y J, Cheng G F, et al. Preparation and photocatalytic property of α-Fe2O3 hollow core/shell hierarchical nanostructures. J. Phys. Chem. Solids, 2010, 71(12): 1680-1683. [26] Cao S W, Zhu Y J. Iron oxide hollow spheres: microwave– hydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties. Acta Mater., 2009, 57(7): 2154-2165. [27] Tamaura Y, Buduan P V, Katsura T. Studies on the oxidation of iron(II) ion during the formation of Fe3O4 and alpha-FeOOH by air oxidation of Fe(OH)2 suspensions. J. Chem. Soc. Dalton Trans., 1981(9): 1807-1811.[28] Domingo C, Rodríguez-Clemente R, Blesa M A. Nature and reactivity of intermediates in the autoxidation of iron(II) in aqueous acid-media. Solid State Ionics, 1993, 59(3/4): 187-195.[29] Refait P, Génin J M R. The mechanisms of oxidation of ferrous hydroxychloride beta-Fe2OH3Cl in aqueous solution: the formation of akaganeite vs goethite. Corros. Sci., 1997, 39(3): 539-553.[30] Santos F J, Varanda L C, Ferracin L C, et al. Synthesis and electrochemical behavior of single-crystal magnetite nanoparticles. J. Phys. Chem. C, 2008, 112(14): 5301-5306.[31] Titirici M M, Antonietti M, Thomas A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem. Mater., 2006, 18(16): 3808-3812. [32] Li L L, Chu Y, Liu Y, et al. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J. Phys. Chem. C, 2007, 111(5): 2123-2127.[33] Wu Z C, Yu K, Zhang S D, et al. Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J. Phys. Chem. C, 2008, 112(30): 11307-11313.[34] Du D J, Cao M H. Ligand-assisted hydrothermal synthesis of hollow Fe2O3 urchin-like microstructures and their magnetic properties. J. Phys. Chem. C, 2008, 112(29): 10754-10758.[35] Liu S H, Xing R M, Lu F, et al. One-pot template-free fabrication of hollow magnetite nanospheres and their application as potential drug carriers. J. Phys. Chem. C, 2009, 113(50): 21042-21047.[36] Luo B, Xu S, Ma W F, et al. Fabrication of magnetite hollow porous nanocrystal shells as a drug carrier for paclitaxel. J. Mater. Chem., 2010, 20(34): 7107-7113.[37] Lian S Y, Wang E B, Gao L, et al. Surfactant-assisted solvothermal preparation of submicrometersized hollow hematite particles and their photocatalytic activity. Mater. Res. Bull., 2006, 41(6): 1192-1198.[38] Mao B D, Kang Z H, Wang E B, et al. Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process. J. Solid State Chem., 2007, 180(2): 489-495.[39] Cheng W, Tang K B, Qi Y X, et. al. One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J. Mater. Chem., 2010, 20(9): 1799-1805.[40] Dong Q, Kumada N, Yonesaki Y, et al. Template-free hydrothermal synthesis of hollow hematite microspheres. J. Mater. Sci., 2010, 45(20): 5685-5691. [41] Qian H S, Lin G F, Zhang Y X, et al. A new approach to synthesize uniform metal oxide hollow nanospheres via controlled precipitation. Nanotechnology, 2007, 18(35): 355602-1-6.[42] Bang J H, Suslick K S. Sonochemical synthesis of nanosized hollow hematite. J. Am. Chem. Soc., 2007, 129(8): 2242-2243. [43] Jagadeesan D, Mansoori U, Mandal P, et al. Hollow spheres to nanocups: tuning the morphology and mag |
| [1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
| [2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
| [3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
| [4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
| [5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
| [6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
| [7] | ZHOU Houlin, SONG Zhiqing, TIAN Guo, GAO Xingsen. Effects of Growth Conditions on the Formation of Self-assembly Grown Topological Domain in BiFeO3 Nanoislands [J]. Journal of Inorganic Materials, 2025, 40(6): 667-674. |
| [8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
| [9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
| [10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
| [11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
| [12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
| [13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
| [14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
| [15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||