Journal of Inorganic Materials ›› 2011, Vol. 26 ›› Issue (4): 443-448.DOI: 10.3724/SP.J.1077.2011.10734
• Research Letter • Previous Articles
ZHANG Xin- Long,HU Guo- Rong,PENG Zhong- Dong
Received:
2010-11-01
Revised:
2010-12-09
Published:
2011-04-20
Online:
2011-04-22
CLC Number:
ZHANG Xin- Long,HU Guo- Rong,PENG Zhong- Dong. Preparation and Effects of Mo-doping on the Electrochemical Properties of Spinel Li4Ti5O12 as Anode Material for Lithium Ion Battery[J]. Journal of Inorganic Materials, 2011, 26(4): 443-448.
Add to citation manager EndNote|Ris|BibTeX
[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries . Nature, 2001, 414(6861): 359 - 367. [2] Ohzuku T, Ueda A, Yamatoto N. Zero-strain insertion material of Li[Li1/3Ti5/3Ti5/3]O4for rechargeable lithium cells. J. Electrochem. Soc., 1995, 142(5): 1431 - 1435. [3] Wagemaker M, Simon D R, KELDER E M, et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+ xTi5O 12. Adv.Mater., 2006, 18(23): 3169 - 3173. [4] Gao J, Jiang C, Ying J, et al.Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries. J. Power Sources, 2006, 155(2): 364 - 367. [5] Jiang C, Ichihara M,Honma I, et al. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim Acta, 2007, 52(23): 6470 - 6475. [6] Wang G X, Bradhurst D H, Dou S X, et al. Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries . J. Power ources, 1999, 83(1/2): 156 - 161. [7] Ariyoshi K, Yamato R, Ohzuku T.Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries. Electrochim. Acta, 2005, 51(6): 1125 - 1129. [8] Chen C H, Vaughey J T, Jansen A N, et al. Studies of Mg-substituted Li4- xMg xTi5O12 spinel electrodes for lithium batteries. J. trochem. Soc., 2001, 148(1): A102 - A104.[9] Robertson A D, Trevino L, Tukamoto H, et al. New inorganic spinel oxides for use as negative electrode aterials in future lithium- ion batteries. J. Power Sources, 1999, 81/82: 52 - 357.[10] Zhao H, Li Y, Zhu Z, et al.Structural and electrochemical characteristics of Li4-xAlxTi5O12 as anode material for lithium-ion batteries. Electrochim. Acta, 2008, 53(24): 7079 - 7083. [11] Martin P, Lopez M L, Pico C, et al. Li(4- x)/3Ti(5-2 x)/3Cr xO4 (0 ≤ x≤ 0.9) spinels: new negatives for lithium batteries . Solid State Sci., 2007, 9(6): 521 - 526. [12]Robertson A D, Tukamoto H, Irvine J T S. Li1 + x Fe1-3 xTi1+2 xO4 (0.0≤ x≤0.33) based spinels: possible negative electrode materials for future Li-ion batteries . J. Electrochem. Soc., 1999, 146(11): 3958 - 3962. [13]Hao Y J, Lai Q Y, Lu J Z, et al. Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials . Ionics, 2007, 13(5): 369 - 373. [14] Huang S, Wen Z, Zhu X, et al. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries . J. Power Sources,2007, 165(1): 408 - 412. [15]Li X, Qu M, Yu Z. Structural and electrochemical performances of Li4Ti5- xZr xO12 as anode material for lithium-ion batteries. J. Alloys Compd., 2009, 487(1/2): L12 - L17. [16]Zhong Z. Synthesis of Mo4+ substituted spinel Li4Ti5- xMo xO12 . Electrochem.Solid-State Lett., 2007, 10(12): A267 - A269. [17]Yi T F, Shu J, Zhu Y R, et al. High-performance Li4Ti5- xV xO12 (0 ≤ x ≤ 0.3) as an Aode material for secondary lithium-ion battery . Electrochim.Acta, 2009, 54(28): 7464 - 7470. [18]Wolfenstine J, Allen J L. Electrical conductivity and charge compensationin Ta doped Li4Ti5O12. J. Power Sources, 2008, 180(1): 582 - 585. [19] Allen J L, Jow T R, Wolfenstine J. Low temperature performance of nanophase Li4Ti5O12. J. Power Sources, 2006, 159(2): 1340 - 1345. [20]Qi Y, Huang Y, Jia D, et al. Preparation and characterization of novel spinel Li4Ti5O12- xBr x anode materials . Electrochim.Acta, 2009, 54(21): 4772 - 4776. [21]Huang S, Wen Z, Gu Z, et al. Preparation and cycling performance of Al3+and F- co-substituted compounds Li4Al xTi5- xF yO12- y . Electrochim.Acta, 2005, 50(20): 4057 - 4062. [22] Huang S, Wen Z, Zhu X, et al. Preparation and electrochemical performance of Ag doped Li4Ti5O 12. Electrochem.Commun., 2004, 6(11): 1093 - 1097. [23]Huang S, Wen Z, Zhang J, et al. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery . Solid State Ionics, 2006, 177(9/10): 851 - 855. [24] Huang S, Wen Z, Zhang J, et al. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery . Electrochim.Acta, 2007, 52(20): 3704 - 3708. [25] Dubiw V M, Diamang Y S, Zhao B, et al. Selective and blanket electroless copper deposition for ultralarge scale integration . J. Electrochem. Soc., 1997, 144(3): 898 - 908. [26] Huang S, Wen Z, Lin B, et al. The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries . J. Alloys Compd.,2008, 457(1/2): 400 - 403. [27] Wang G. J, Gao J, Fu L J, et al. Preparation and characteristic of carbon-coated Li4Ti5O12 anode material . J. Power Sources, 2007, 114(2): 1109 - 1112. [28]Gao J, Ying J, Jiang C, et al. Preparation and characteristic of carbon-coated Li4Ti5O12 anode material . J. Power Sources, 2007, 166(1): 255 - 259. [29] Liu H, Feng Y, Wang K, et al. Synthesis and electrochemical properties of Li4Ti5O12/C composite by the PVB rheological phase method . J. Phys. Chem.Solids, 2008, 69(8): 2037 - 2040. [30] Yang L, Gao L. High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries. J. Alloys Compd., 2009, 485(1/2): 93 - 97. [31] Cheng L, Yan J, Zhu G N, et al.General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J. Mater. Chem., 2010, 20(3): 595 - 602. [32] Wang Y, Liu H, Wang K, et al. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon . J. Mater. Chem.,2009, 19(37): 6789 - 6795.[33] Kavan L, Dunsch L, Kataura H. Electrochemical tuning of electronic structure of carbon nanotubes and fullerene peapods . Carbon, 2004, 42(5/6): 1011 - 1019. [34] Huang S, Woodson M, Smalley R, et al. Growth mechanism of oriented long single walled carbon nanotubes using "fast-heating" chemical |
[1] | JIANG Zongyu, HUANG Honghua, QING Jiang, WANG Hongning, YAO Chao, CHEN Ruoyu. Aluminum Ion Doped MIL-101(Cr): Preparation and VOCs Adsorption Performance [J]. Journal of Inorganic Materials, 2025, 40(7): 747-753. |
[2] | ZHOU Yangyang, ZHANG Yanyan, YU Ziyi, FU Zhengqian, XU Fangfang, LIANG Ruihong, ZHOU Zhiyong. Enhancement of Piezoelectric Properties in CaBi4Ti4O15-based Ceramics through Bi3+ Self-doping Strategy [J]. Journal of Inorganic Materials, 2025, 40(6): 719-728. |
[3] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[4] | AN Ran, LIN Si, GUO Shigang, ZHANG Chong, ZHU Shun, HAN Yingchao. Iron-doped Nano-hydroxyapatite: Preparation and Ultraviolet Absorption Performance [J]. Journal of Inorganic Materials, 2025, 40(5): 457-465. |
[5] | PAN Yuzhou, HE Fajian, XU Lulu, DAI Shixun. Broadband 3 μm Mid-infrared Emission in Dy3+/Yb3+ Co-doped Tellurite Glass under 980 nm LD Excitation [J]. Journal of Inorganic Materials, 2025, 40(5): 521-528. |
[6] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[7] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[8] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. |
[9] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[10] | ZHAO Zhihan, GUO Peng, WEI Jing, CUI Li, LIU Shanze, ZHANG Wenlong, CHEN Rende, WANG Aiying. Ti Doped Diamond Like Carbon Films: Piezoresistive Properties and Carrier Transport Behavior [J]. Journal of Inorganic Materials, 2024, 39(8): 879-886. |
[11] | LI Jiaqi, LI Xiaosong, LI Xuanhe, ZHU Xiaobing, ZHU Aimin. Transition Metal-doped Manganese Oxide: Synthesis by Warm Plasma and Electrocatalytic Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2024, 39(7): 835-844. |
[12] | TAM YU Puy Mang, XU Yu, GAO Quanhao, ZHOU Haiqiong, ZHANG Zhen, YIN Hao, LI Zhen, LÜ Qitao, CHEN Zhenqiang, MA Fengkai, SU Liangbi. Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(3): 330-336. |
[13] | LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150. |
[14] | DAI Le, LIU Yang, GAO Xuan, WANG Shuhao, SONG Yating, TANG Mingmeng, DMITRY V Karpinsky, LIU Lisha, WANG Yaojin. Self-polarization Achieved by Compositionally Gradient Doping in BiFeO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(1): 99-106. |
[15] | LI Guanglan, WANG Tianyu, LIU Yichen, LU Zhongfa. Layered NiFeCo-LDH-Ti6C3.75 Catalyst: Preparation and Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2023, 38(7): 823-829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||