[1] ZHANG Y, XIA L Z, LI C Y,et al. Enhanced 2.7 µm mid-infrared emission in Er3+/Ho3+ co-doped tellurite glass. Optics and Laser Technology, 2021, 138: 106913. [2] WANG C Z, TIAN Y, GAO X Y,et al. Investigation of broadband mid-infrared emission and quantitative analysis of Dy-Er energy transfer in tellurite glasses under different excitations. Optics Express, 2017, 25(23): 29512. [3] FENG S H, LIU C Z, ZHU J,et al. Realizing particle population inversion of 2.7 μm emission in heavy Er3+/Pr3+ co-doped low hydroxyl fluorotellurite glass for mid-infrared laser. Ceramics International, 2023, 49: 20372. [4] 王森宇, 陈俊生, 赵鑫生, 等. 3~5 μm稀土离子掺杂中红外光纤激光器的研究进展(特邀). 红外与激光工程, 2023, 52(5): 20230215. [5] TOBBEN H.Room temperature CW fiber laser at 3.5 μm in Er3+-doped ZBLAN glass.Electronics Letters, 1992, 28(14): 1361. [6] AYDIN Y O, FORTIN V, VALLEE R,et al. Towards power scaling of 2.8 μm fiber lasers. Optics Letters, 2018, 43(18): 4542. [7] 尹朋伟, 李彦潮, 赵文凯, 等. 中红外稀土掺杂碲酸盐玻璃和光纤. 发光学报, 2022, 43(11): 1705. [8] EI-MALLAWANY R A H. Tellurite Glasses Handbook: Physical Properties and Data. Boca Raton: CRC press, 2001: 1-50. [9] TIAN Y, XU R R, HU L L,et al. Broadband 2.84 μm luminescence properties and Judd-Ofelt analysis in Dy3+ doped ZrF4-BaF2-LaF3-AlF3-YF3 glass. Journal of Luminescence, 2012, 132: 128. [10] GAO X Q, FANG G Y, WANG Y,et al. Visible and mid-infrared spectral performances of Dy3+: CaF2 and Dy3+/Y3+: CaF2 crystals. Journal of Alloys and Compounds, 2021, 856: 158083. [11] 万瑞, 杨利青, 霍伟荣, 等. 中红外碲酸盐玻璃及光纤研究进展. 硅酸盐通报, 2022, 41(8): 2589. [12] ALVES R T.Raman and optical spectroscopy studies in Tm3+/Dy3+-codoped zinc tellurite glasses.Journal of Luminescence, 2021, 230: 117738. [13] NEDELCHEVA A B, IORDANOVA R, GANEV S,et al. Glass formation and structural studies of glasses in the TeO2-ZnO-Bi2O3-Nb2O5 system. Journal of Non-Crystalline Solids, 2019, 503: 224. [14] FARES H, JLASSI I, ELHOUICHET H,et al. Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding. Journal of Non-Crystalline Solids, 2014, 396: 1. [15] KOROLEVA O N, SHTENBERG M V, IVANOVA T N.The structure of potassium germanate glasses as revealed by Raman and IR spectroscopy.Journal of Non-Crystalline Solids, 2019, 510: 143. [16] 周凌峰. 掺稀土氟化物玻璃组分设计及3 μm中红外光谱特性的研究. 杭州: 中国计量大学硕士学位论文, 2020. [17] CAI M Z, ZHOU B, TIAN Y,et al. Broadband mid-infrared 2.8 μm emission in Ho3+/Yb3+-codoped germanate glasses. Journal of Luminescence, 2016, 171: 143. [18] QI F W, ZHOU L F, TIAN Y,et al. Low-hydroxy Dy3+/Nd3+ co-doped fluoride glass for broadband 2.9 µm luminescence properties. Journal of Luminescence, 2017, 190: 392. [19] JUDD B R.Optical absorption intensities of rare-earth ions. Physical Review, 1962, 127(3): 750. [20] BRIK M G, ISHII T, TKACHUK A M,et al. Calculations of the transitions intensities in the optical spectra of Dy3+: LiYF4. Journal of Alloys and Compounds, 2004, 374: 63. [21] GUO H T, LIU L, WANG Y Q,et al. Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codped Ge-Ga-S-CdI2 chalcohalide glasses. Optics Express, 2009, 17(17): 15350. [22] SONG C L, ZHOU D C, XU P F,et al. Enhanced 3 μm luminescence in Ho3+/Yb3+ co-doped bismuth-tellurite glass by controlled structure network topology. Journal of Non-Crystalline Solids, 2022, 597: 121919. [23] QI F W, HUANG F F, WANG T,et al. Enhanced 3 μm luminescence properties based on effective energy transfer Yb3+: 2F5/2→Dy3+: 6H5/2 in fluoaluminate glass modified by TeO2. Applied Optics, 2017, 56(31): H24. [24] SHEN L L, WANG N, DOU A J,et al. Broadband ~3 μm mid-infrared emission in Dy3+/Yb3+ co-doped germanate glasses. Optical Materials, 2018, 75: 274. [25] ZHANG P X, XU M, ZHANG L H,et al. Intense 2.89 μm emission from Dy3+/Yb3+-codoped PbF2 crystal by 970 nm laser diode pumping. Optics Express, 2015, 23(21): 27786. [26] 戴世勋, 杨建虎, 戴能利, 等. 荧光捕获效应对Yb3+磷酸盐玻璃光谱性质的影响. 物理学报, 2003, 52(6): 1533. [27] CAI X Y, WANG Y, LI J F,et al. Enhanced broadband 3 μm emission in Yb3+/Dy3+: YAlO3 crystal under 979 nm excitation. Vacuum, 2020, 181: 109647. [28] PAYNE S A, CHASE L L, SMITH L K,et al. Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+. IEEE Journal of Quantum Electronics, 1992, 28(11): 2619. [29] CCUMBER D E.Theory of Phonon-Terminated Optical Masers.Physical Review, 1964, 134(2A): A299. [30] HANG L Y, ZHANG J J, YU C L,et al. A method for emission cross section determination of Tm3+ at 2.0 μm emission. Journal of Applied Physics, 2010, 108: 103117. [31] BOUDEIF Y M, YOUSEF E S, MARZOUK S Y,et al. Investigation of luminescence parameters of novel glasses with composition TeO2-ZnO-NaF-MoO2-Er2O3 as laser material. Journal of Non-Crystalline Solids, 2018, 498: 72. [32] MIYAKAWA T, DEXTER D L.Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids.Physical Review B, 1970, 1(7): 2961. [33] DEXTER D L.A theory of sensitized luminescence in solids.The Journal of Chemical Physics, 1953, 21(5): 836. |