Journal of Inorganic Materials ›› 2011, Vol. 26 ›› Issue (4): 443-448.DOI: 10.3724/SP.J.1077.2011.10734
• Research Letter • Previous Articles
ZHANG Xin- Long,HU Guo- Rong,PENG Zhong- Dong
Received:
2010-11-01
Revised:
2010-12-09
Published:
2011-04-20
Online:
2011-04-22
CLC Number:
ZHANG Xin- Long,HU Guo- Rong,PENG Zhong- Dong. Preparation and Effects of Mo-doping on the Electrochemical Properties of Spinel Li4Ti5O12 as Anode Material for Lithium Ion Battery[J]. Journal of Inorganic Materials, 2011, 26(4): 443-448.
Add to citation manager EndNote|Ris|BibTeX
[1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries . Nature, 2001, 414(6861): 359 - 367. [2] Ohzuku T, Ueda A, Yamatoto N. Zero-strain insertion material of Li[Li1/3Ti5/3Ti5/3]O4for rechargeable lithium cells. J. Electrochem. Soc., 1995, 142(5): 1431 - 1435. [3] Wagemaker M, Simon D R, KELDER E M, et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+ xTi5O 12. Adv.Mater., 2006, 18(23): 3169 - 3173. [4] Gao J, Jiang C, Ying J, et al.Preparation and characterization of high-density spherical Li4Ti5O12 anode material for lithium secondary batteries. J. Power Sources, 2006, 155(2): 364 - 367. [5] Jiang C, Ichihara M,Honma I, et al. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim Acta, 2007, 52(23): 6470 - 6475. [6] Wang G X, Bradhurst D H, Dou S X, et al. Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries . J. Power ources, 1999, 83(1/2): 156 - 161. [7] Ariyoshi K, Yamato R, Ohzuku T.Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries. Electrochim. Acta, 2005, 51(6): 1125 - 1129. [8] Chen C H, Vaughey J T, Jansen A N, et al. Studies of Mg-substituted Li4- xMg xTi5O12 spinel electrodes for lithium batteries. J. trochem. Soc., 2001, 148(1): A102 - A104.[9] Robertson A D, Trevino L, Tukamoto H, et al. New inorganic spinel oxides for use as negative electrode aterials in future lithium- ion batteries. J. Power Sources, 1999, 81/82: 52 - 357.[10] Zhao H, Li Y, Zhu Z, et al.Structural and electrochemical characteristics of Li4-xAlxTi5O12 as anode material for lithium-ion batteries. Electrochim. Acta, 2008, 53(24): 7079 - 7083. [11] Martin P, Lopez M L, Pico C, et al. Li(4- x)/3Ti(5-2 x)/3Cr xO4 (0 ≤ x≤ 0.9) spinels: new negatives for lithium batteries . Solid State Sci., 2007, 9(6): 521 - 526. [12]Robertson A D, Tukamoto H, Irvine J T S. Li1 + x Fe1-3 xTi1+2 xO4 (0.0≤ x≤0.33) based spinels: possible negative electrode materials for future Li-ion batteries . J. Electrochem. Soc., 1999, 146(11): 3958 - 3962. [13]Hao Y J, Lai Q Y, Lu J Z, et al. Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials . Ionics, 2007, 13(5): 369 - 373. [14] Huang S, Wen Z, Zhu X, et al. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries . J. Power Sources,2007, 165(1): 408 - 412. [15]Li X, Qu M, Yu Z. Structural and electrochemical performances of Li4Ti5- xZr xO12 as anode material for lithium-ion batteries. J. Alloys Compd., 2009, 487(1/2): L12 - L17. [16]Zhong Z. Synthesis of Mo4+ substituted spinel Li4Ti5- xMo xO12 . Electrochem.Solid-State Lett., 2007, 10(12): A267 - A269. [17]Yi T F, Shu J, Zhu Y R, et al. High-performance Li4Ti5- xV xO12 (0 ≤ x ≤ 0.3) as an Aode material for secondary lithium-ion battery . Electrochim.Acta, 2009, 54(28): 7464 - 7470. [18]Wolfenstine J, Allen J L. Electrical conductivity and charge compensationin Ta doped Li4Ti5O12. J. Power Sources, 2008, 180(1): 582 - 585. [19] Allen J L, Jow T R, Wolfenstine J. Low temperature performance of nanophase Li4Ti5O12. J. Power Sources, 2006, 159(2): 1340 - 1345. [20]Qi Y, Huang Y, Jia D, et al. Preparation and characterization of novel spinel Li4Ti5O12- xBr x anode materials . Electrochim.Acta, 2009, 54(21): 4772 - 4776. [21]Huang S, Wen Z, Gu Z, et al. Preparation and cycling performance of Al3+and F- co-substituted compounds Li4Al xTi5- xF yO12- y . Electrochim.Acta, 2005, 50(20): 4057 - 4062. [22] Huang S, Wen Z, Zhu X, et al. Preparation and electrochemical performance of Ag doped Li4Ti5O 12. Electrochem.Commun., 2004, 6(11): 1093 - 1097. [23]Huang S, Wen Z, Zhang J, et al. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery . Solid State Ionics, 2006, 177(9/10): 851 - 855. [24] Huang S, Wen Z, Zhang J, et al. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery . Electrochim.Acta, 2007, 52(20): 3704 - 3708. [25] Dubiw V M, Diamang Y S, Zhao B, et al. Selective and blanket electroless copper deposition for ultralarge scale integration . J. Electrochem. Soc., 1997, 144(3): 898 - 908. [26] Huang S, Wen Z, Lin B, et al. The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries . J. Alloys Compd.,2008, 457(1/2): 400 - 403. [27] Wang G. J, Gao J, Fu L J, et al. Preparation and characteristic of carbon-coated Li4Ti5O12 anode material . J. Power Sources, 2007, 114(2): 1109 - 1112. [28]Gao J, Ying J, Jiang C, et al. Preparation and characteristic of carbon-coated Li4Ti5O12 anode material . J. Power Sources, 2007, 166(1): 255 - 259. [29] Liu H, Feng Y, Wang K, et al. Synthesis and electrochemical properties of Li4Ti5O12/C composite by the PVB rheological phase method . J. Phys. Chem.Solids, 2008, 69(8): 2037 - 2040. [30] Yang L, Gao L. High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries. J. Alloys Compd., 2009, 485(1/2): 93 - 97. [31] Cheng L, Yan J, Zhu G N, et al.General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J. Mater. Chem., 2010, 20(3): 595 - 602. [32] Wang Y, Liu H, Wang K, et al. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon . J. Mater. Chem.,2009, 19(37): 6789 - 6795.[33] Kavan L, Dunsch L, Kataura H. Electrochemical tuning of electronic structure of carbon nanotubes and fullerene peapods . Carbon, 2004, 42(5/6): 1011 - 1019. [34] Huang S, Woodson M, Smalley R, et al. Growth mechanism of oriented long single walled carbon nanotubes using "fast-heating" chemical |
[1] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. |
[2] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[3] | ZHAO Zhihan, GUO Peng, WEI Jing, CUI Li, LIU Shanze, ZHANG Wenlong, CHEN Rende, WANG Aiying. Ti Doped Diamond Like Carbon Films: Piezoresistive Properties and Carrier Transport Behavior [J]. Journal of Inorganic Materials, 2024, 39(8): 879-886. |
[4] | LI Jiaqi, LI Xiaosong, LI Xuanhe, ZHU Xiaobing, ZHU Aimin. Transition Metal-doped Manganese Oxide: Synthesis by Warm Plasma and Electrocatalytic Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2024, 39(7): 835-844. |
[5] | TAM YU Puy Mang, XU Yu, GAO Quanhao, ZHOU Haiqiong, ZHANG Zhen, YIN Hao, LI Zhen, LÜ Qitao, CHEN Zhenqiang, MA Fengkai, SU Liangbi. Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(3): 330-336. |
[6] | LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150. |
[7] | DAI Le, LIU Yang, GAO Xuan, WANG Shuhao, SONG Yating, TANG Mingmeng, DMITRY V Karpinsky, LIU Lisha, WANG Yaojin. Self-polarization Achieved by Compositionally Gradient Doping in BiFeO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(1): 99-106. |
[8] | LI Guanglan, WANG Tianyu, LIU Yichen, LU Zhongfa. Layered NiFeCo-LDH-Ti6C3.75 Catalyst: Preparation and Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2023, 38(7): 823-829. |
[9] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
[10] | YANG Yingkang, SHAO Yiqing, LI Bailiang, LÜ Zhiwei, WANG Lulu, WANG Liangjun, CAO Xun, WU Yuning, HUANG Rong, YANG Chang. Enhanced Band-edge Luminescence of CuI Thin Film by Cl-doping [J]. Journal of Inorganic Materials, 2023, 38(6): 687-692. |
[11] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[12] | WANG Zhiqiang, WU Ji’an, CHEN Kunfeng, XUE Dongfeng. Large-size Er,Yb:YAG Single Crystal: Growth and Performance [J]. Journal of Inorganic Materials, 2023, 38(3): 329-334. |
[13] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[14] | LU Chenhui, GE Wanyin, SONG Panpan, ZHANG Panfeng, XU Meimei, ZHANG Wei. Luminescence Property of Eu Doped SiAlON Phosphors for White LEDs [J]. Journal of Inorganic Materials, 2023, 38(1): 97-104. |
[15] | WANG Yang, FAN Guangxin, LIU Pei, YIN Jinpei, LIU Baozhong, ZHU Linjian, LUO Chengguo. Microscopic Mechanism of K+ Doping on Performance of Lithium Manganese Cathode for Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(9): 1023-1029. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||