Journal of Inorganic Materials ›› 2011, Vol. 26 ›› Issue (4): 337-346.DOI: 10.3724/SP.J.1077.2011.00337
• Review • Next Articles
XIAO Yu-Tang1,XU Shuang-Shuang1,DU Yong-Chao2,Fu Q. Shiang3
Received:
2010-07-13
Revised:
2010-08-29
Published:
2011-04-20
Online:
2011-04-22
Supported by:
Natural Science Foundation of Tianjin (08JCYBJC02600); National Major Technological Projects of China Related to Water Pollution Control and Treatment (2008ZX07314-005-011)
CLC Number:
XIAO Yu-Tang,XU Shuang-Shuang,DU Yong-Chao,Fu Q. Shiang. Progress of Novel TiO2 Photocatalytic Separation Membrane[J]. Journal of Inorganic Materials, 2011, 26(4): 337-346.
Add to citation manager EndNote|Ris|BibTeX
[1] Meng F G, Meng S R, Chae A, et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res. , 2009, 43(6): 1489 - 1512. [2] Yu H Y, Xie Y J, Hu M X, et al. Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment. J. Membr. Sci. , 2005, 254(1/2): 219 - 227. [3] Susanto H, Feng Y, Ulbricht M. Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. J. Food Eng. , 2009, 91(2): 333 - 340. [4] Mo H, Tay K G, Ng H Y. Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature. J. Membr. Sci. , 2008, 315(1/2): 28 - 35. [5] Jermann D, Pronk W, Boller M. Mutual influences between natural organic matter and inorganic particles and their combined effect on ultrafiltration membrane fouling. Environ. Sci. Technol. , 2008, 42(24): 9129 - 9136. [6] Liang S, Zhao Y, Liu C, et al. Effect of solution chemistry on the fouling potential of dissolved organic matter in membrane bioreactor systems. J. Membr. Sci. , 2008, 310(1/2): 503 - 511. [7] Liu C X, Zhang D R, He Y, et al. Modification of membrane surface for anti-biofouling performance: effect of anti-adhesion and anti-bacteria approaches. J. Membr. Sci. , 2010, 346(1/2): 121 - 130. [8] Kim J Y, Chang I S, Park H H, et al. New configuration of a membrane bioreactor for effective control of membrane fouling and nutrients removal in wastewater treatment. Desalination, 2008, 230(1/2/3): 153 - 161. [9] Porcelli N, Judd S. Chemical cleaning of potable water membranes: A review. Sep. Purif. Technol. , 2010, 71(2): 137 - 143. [10] Mi B, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. J. Membr. Sci. , 2010, 348(1/2): 337 - 345. [11] Herrmann J M, Duchamp C, Karkmaz M, et al. Environmental green chemistry as defined by photocatalysis. J. Hazard. Mater. , 2007, 146(3): 624 - 629. [12] Chong M N, Jin B, Chow C W K, et al. Recent developments in photocatalytic water treatment technology: a review. Water Res. , 2010, 44(10): 2997 - 3027. [13] Fujishima A, Zhang X T. Titanium dioxide photocatalysis: present situation and future approaches. C. R. Chim. , 2006, 9(5/6): 750 - 760. [14] Augugliaro V, Litter M, Palmisano L, et al. The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J. Photochem. Photobiol. C, 2006, 7(4): 127 - 144. [15] Pelton R, Geng X, Brook M. Photocatalytic paper from colloidal TiO2-fact of fantasy, Adv. Colloid Interface Sci. , 2006, 127(1): 42 - 53. [16] Tryba B. Immobilization of TiO2 and Fe-C-TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. J. Hazard. Mater. , 2008, 151(2/3): 623 - 627. [17] Wang C X, Yin L W, Zhang L Y, et al. Magnetic (gamma- Fe2O3@SiO2)(n)@TiO2 functional hybrid nanoparticles with actived photocatalytic ability. J. Phys. Chem. C, 2009, 113(10): 4008 - 4011. [18] Li H S, Zhang Y P, Wang S Y, et al. Study on nanomagnets supported TiO2 photocatalysts prepared by a Sol–Gel process in reverse microemulsion combining with solvent-thermal technique. J. Hazard. Mater. , 2009, 169(1/2/3): 1045 - 1053. [19] Li X Z, Liu H. Photocatalytic oxidation using a new catalyst-TiO2 microsphere-for water and wastewater treatment. Environ. Sci. Technol. , 2003, 37(17): 3989 - 3994. [20] Xu J H, Dai W L, Li J, et al. Novel core-shell structured mesoporous titania microspheres: preparation, characterization and excellent photocatalytic activity in phenol abatement. J. Photochem. Photobiol. A, 2008, 195(2/3): 284 - 294. [21] Zhao X, Liu M H, Zhu Y F. Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances. Thin Solid Films, 2007, 515(18): 7127 - 7134. [22] Xiao Y T, Xu S S, Li Z H, et al. Progress of applied research on TiO2 photocatalysis-membrane separation coupling technology in water and wastewater treatments. Chin. Sci. Bull. , 2010, 55(14): 1345 - 1353. [23] Mozia S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. Sep. Purif. Technol. , 2010, 73(2): 71 - 91. [24] Molinari R, Palmisano L, Drioli E, et al. Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. J. Membr. Sci. , 2002, 206(1/2): 399 - 415. [25] Madaeni S S, Ghaemi N. Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J. Membr. Sci. , 2007, 303(1/2): 221 - 233. [26] Tsuru T, Kan-no T, Yoshioka T, et al. A photocatalytic membrane reactor for gas-phase reactions using porous titanium oxide membranes. Catal. Today, 2003, 82(1-4): 41 - 48. [27] Syafei A D, Lin C F, Wu C H. Removal of natural organic matter by ultra?ltration with TiO2-coated membrane under UV irradiation. J. Colloid Interface Sci. , 2008, 323(1): 112 - 119. [28] H Choi, E Stathatos, Dionysiou D D. Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems. Desalination, 2007, 202(1/2/3 ): 199 - 206. [29] Zhang H M, Quan X, Chen S, et al. Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability. Environ. Sci. Technol. , 2006, 40(19): 6104 - 6109. [30] Bae T H, Tak T M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. , 2005, 249(1/2): 1 - 8. [31] Kim S H, Kwak S Y, Sohn B H, et al. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Membr. Sci. , 2003, 211(1): 157 - 165. [32] Yang Y N, Wang P. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol-gel process. Polymer, 2006, 47(8): 2683 - 2688. [33] Damodar R A, You S J, Chou H H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. , 2009, 172(2/3): 1321 - 1328. [34] Xu Z L, Yu L Y, Han L F. Polymer-nanoinorganic particles composite membranes: a brief overview. Front. Chem. Eng. Chin. , 2009, 3(3): 318 - 329. [35] Loddo V, Augugliaro V, Palmisano L. Photocatalytic membrane reactors: case studies and perspectives. Asia-Pac. J. Chem. Eng. , 2009, 4(3): 380 - 384. [36] J Kim, Bruggen B V D. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. , 2010, 158(7): 2335 - 2349. [37] Wang R C, Ren D J, Xia S Q, et al. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J. Hazard. Mater. , 2009, 169(1/2/3): 926 - 932. [38] Gumy D, Rincon A G, Hajdu R, et al. Solar photocatalysis for detoxi?cation and disinfection of water: different types of suspended and ?xed TiO2 catalysts study. Sol. Energy, 2006, 80(10): 1376 - 1381. [39] Ollis D F. Integrating photocatalysis and membrane technologies for water treatment. Ann. N. Y. Acad. Sci. , 2003, 984: 65 - 84. [40] Molinari R, Pirillo F, Loddo V, et al. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal. Today, 2006, 118(1/2): 205 - 213. [41] Oh S J, Kim N, Lee |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||