Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (4): 369-374.DOI: 10.3724/SP.J.1077.2013.12300
• Orginal Article • Previous Articles Next Articles
LIU Wen1,2, MIAO Yang1, CHEN Shao-Ping1, ZHUANG Lei1, MENG Qing-Sen1
Received:
2012-05-07
Revised:
2012-07-12
Published:
2013-04-10
Online:
2013-03-20
About author:
LIU Wen. E-mail: lw915136@sina.com
CLC Number:
LIU Wen, MIAO Yang, CHEN Shao-Ping, ZHUANG Lei, MENG Qing-Sen. Preparation and Characterization of AlMgB14-TiB2 Composite by Field-activated and Pressure-assisted Synthesis[J]. Journal of Inorganic Materials, 2013, 28(4): 369-374.
Add to citation manager EndNote|Ris|BibTeX
Experimental steps | The pre-reacted starting powder with composition | Process parameters |
---|---|---|
1 | Al:Mg:B=1:1:14+CS+3wt%Al [ | Temperature 1400℃, pressing force 20 MPa, heating rate 100 ℃/min, soak time 10 min |
2 | AlMgB14+30wt%TiB2 | Temperature 1500℃, pressing force 60 MPa, heating rate 100 ℃/min, soak time 15 min |
Table 1 Experimental methods and process parameters
Experimental steps | The pre-reacted starting powder with composition | Process parameters |
---|---|---|
1 | Al:Mg:B=1:1:14+CS+3wt%Al [ | Temperature 1400℃, pressing force 20 MPa, heating rate 100 ℃/min, soak time 10 min |
2 | AlMgB14+30wt%TiB2 | Temperature 1500℃, pressing force 60 MPa, heating rate 100 ℃/min, soak time 15 min |
Regions | Element | wt% | at% |
---|---|---|---|
A | B | 63.34 | 80.34 |
Mg | 18.31 | 10.33 | |
Al | 18.35 | 9.33 | |
B | B | 4.82 | 18.33 |
Ti | 95.18 | 81.67 | |
C | O | 41.92 | 54.07 |
Mg | 18.07 | 15.34 | |
Al | 40.01 | 30.60 |
Table 2 EDS analyses of A, B, C regions shown in Fig. 4
Regions | Element | wt% | at% |
---|---|---|---|
A | B | 63.34 | 80.34 |
Mg | 18.31 | 10.33 | |
Al | 18.35 | 9.33 | |
B | B | 4.82 | 18.33 |
Ti | 95.18 | 81.67 | |
C | O | 41.92 | 54.07 |
Mg | 18.07 | 15.34 | |
Al | 40.01 | 30.60 |
Sample | Vickers hardness /GPa | Fracture toughness KIC/(MPa·m½) |
---|---|---|
AlMgB14 | 27.2 | 3.00 |
AlMgB14-30wt%TiB2 | 31.5 | 3.65 |
Table 3 Vickers hardness and fracture toughness for AlMgB14 and AlMgB14-30wt%TiB2 composites
Sample | Vickers hardness /GPa | Fracture toughness KIC/(MPa·m½) |
---|---|---|
AlMgB14 | 27.2 | 3.00 |
AlMgB14-30wt%TiB2 | 31.5 | 3.65 |
Preparation methods | Phase composition | Structure | Hardness Vicker/GPa | Fracture toughness KIC/(MPa·m½) | Process parameters |
---|---|---|---|---|---|
FAPAS | AlMgB14 ,TiB2, MgAl2O4(impurity) | In the form of individual (TiB2) grains in the size range of 2-5 µm and larger aggregates with an average grain size of about 10 µm | 31.5 | 3.65 | 1500℃, 60 MPa, 15 min |
Hot pressing[ | AlMgB14, TiB2, MgAl2O4(impurity) FeB4O7(impurity) | In the form of individual (TiB2) grains in the size range of 1-3 µm and larger aggregates with an average grain size of about≤5 µm | 31-35 | 3.7±0.2 | 1600℃, 75 MPa, 1 h |
Table 4 Comparison of composition, structure and mechanical properties about AlMgB14-30wt%TiB2 composite prepared by FAPAS and hot pressing
Preparation methods | Phase composition | Structure | Hardness Vicker/GPa | Fracture toughness KIC/(MPa·m½) | Process parameters |
---|---|---|---|---|---|
FAPAS | AlMgB14 ,TiB2, MgAl2O4(impurity) | In the form of individual (TiB2) grains in the size range of 2-5 µm and larger aggregates with an average grain size of about 10 µm | 31.5 | 3.65 | 1500℃, 60 MPa, 15 min |
Hot pressing[ | AlMgB14, TiB2, MgAl2O4(impurity) FeB4O7(impurity) | In the form of individual (TiB2) grains in the size range of 1-3 µm and larger aggregates with an average grain size of about≤5 µm | 31-35 | 3.7±0.2 | 1600℃, 75 MPa, 1 h |
[1] | Cook B A, Harringa J L, Lewis T L, et al. A new class of ultar- materials based on AlMgB14. Scripta Mater., 2000, 42(6): 597-602. |
[2] | Russell A M, Cook B A, Harringa J L, et al. Coefficient of thermal expansion of AlMgB14. Scr. Mater., 2002, 46(1): 629-633. |
[3] | Lewis T L, Cook B A, Harringa J L, et al. Al2MgO4, Fe3O4, and FeB impurities in AlMgB14. Mater. Sci. Eng. A, 2003, 351(10): 117-122. |
[4] | Cherukuri R, Womack M, Molian P, et al. Pulsed laser deposition of AlMgB14 on carbide inserts for metal cutting. Surf. Coat. Technol., 2002, 155: 112-120. |
[5] | Ahmed A, Bahadur S, Cook B A, et al. Mechanical properties and scratch test studies of new ultra-hard AlMgB14 modified by TiB2. Tribol. Int., 2006, 39(1): 129-137. |
[6] | Riedel R. Novel ultrahard materials. Adv. Mater., 1994, 6(7/8): 549-560. |
[7] | Cook B A, Russell A M, Harringa J L, et al. A new fracture- resistant binder phase for use with AlMgB14 and other ultra-hard ceramics. Journal of Alloys and Compounds, 2004, 366(4): 145-151. |
[8] | Roberts David J, Zhao Jinfeng, Munir Zuhair A. Mechanism of reactive sintering of MgAlB14 by pulse electric current. Journal of Refractory Metals & Hard Materials, 2009, 27(4): 556-563. |
[9] | Kevorkijan V, Skapin S D, Jelen M, et al. Cost-effective synthesis of AlMgB14-xTiB2. Journal of the European Ceramic Society, 2007, 27(3): 493-497. |
[10] | Shigeru Okadaa, Toetsu Shishido, Takao Mori, et al. Crystal growth of MgAlB14-type compounds using metal salts and some properties. Journal of Alloys and Compounds, 2008, 458(4): 297-301. |
[11] | Tanaka Minoru, Higashi Iwami. Crystal growth of boron-rich compounds in the Al-Mg-B system. Bulletin of TIRI, 2007, 58(2): 58-61. |
[12] | Meng Q S, Fan W H, Chen R X.et al. Thermoelectric properties of nanostructured FeSi2 prepared by field-activated and pressure- assisted reactive sintering. Journal of Alloys and Compounds, 2010, 492(1/2): 303-306. |
[13] | Richard Bodkin. A Synthesis and Study of AlMgB14. Johannesburg: The University of the Witwatersrand, 2005: 140. |
[14] | Shetty D K, Wright P N, Mincer A H.et al. hidentation fracture of WC-Co cermets. J. Mater. Sci., 1985, 20(5): 1873-1882. |
[15] | Iwami Higashi, Tosio Sakurai, Tetsuzo Atoda. Crystal structure of α-AlB12. Journal of Solid State Chemistry, 1977, 20(1): 67-77. |
[16] | Cook B A, Russell A M, Peters J S, et al. Estimation of surface energy and bonding between AlMgB14 and TiB2. J. Phys. & Chem. Solids, 2010, 71(5): 824-826. |
[17] | Ahmed A, Bahadur S, Russell A M, et al. Belt abrasion resistance and cutting tool studies on new ultra-hard boride materials. Tribology International, 2009, 42(5): 706-713. |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[3] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[4] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[5] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[6] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[7] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[8] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[9] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[10] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[11] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[12] | WU Dongjiang, ZHAO Ziyuan, YU Xuexin, MA Guangyi, YOU Zhulin, REN Guanhui, NIU Fangyong. Direct Additive Manufacturing of Al2O3-TiCp Composite Ceramics by Laser Directed Energy Deposition [J]. Journal of Inorganic Materials, 2023, 38(10): 1183-1192. |
[13] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[14] | XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration [J]. Journal of Inorganic Materials, 2022, 37(6): 636-642. |
[15] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||