[1] Bruni S, Martinesi M, Stio M, et al. Effects of surface treatment of Ti-6Al-4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells. Acta Biomater., 2005, 1(2): 223-234.[2] DAS M, BALLA V K, BASU D, et al. Laser processing of SiC-particle-reinforced coating on titanium. Scr. Mater., 2010, 63(4): 438-441.[3] LI X M, LI Y S, HAN Y. Preparation of alumina coatings on titanium by cathodic micro-arc electrodeposition. Journal of Inorganic Materials, 2005, 20(6): 1493-1499.[4] GUO L T, LIU X C, GAO J Q, et al. Effect of titaniumsurface oxidation on the bonding strength of Ti-porcelain. Journal of Inorganic Materials, 2009, 24(5): 915-918.[5] GUO C, ZHOU J, ZHAO J, et al. Effect of ZrB2 on the microstructure and wear resistance of Ni-based composite coating produced on pure Ti by laser cladding. Tribol. Trans., 2011, 54(1): 80-86.[6] BAKER T N, SELAMAT M S. Surface engineering of Ti-6Al-4V by nitridingand powder alloying using CW CO2 laser. Mater. Sci. Technol., 2008, 24(4): 189-200.[7] YILDIZ F, YETIM A, ALSARAN A, et al. Plasma nitriding behavior of Ti6Al4V orthopedic alloy. Surf. Coat. Technol., 2008, 202(11): 2471-2476.[8] JIANG P, HE X L, LI X X, et al. Wear resistance of a laser surface alloyed Ti-6Al-4V alloy. Surf. Coat. Technol., 2000, 130: 24-28.[9] NOLAN D, HUANG S, LESKOVSEK V, et al. Sliding wear of titanium nitride thin films deposited on Ti-6Al-4V alloy by PVD and plasma nitriding processes. Surf. Coat. Technol., 2006, 200(20/21): 5698-5705.[10] LI Q J, WU H H, WANG J B, et al. Effects of pulse frequencies on properties of MAO coatings on pure titanium. Journal of Inorganic Materials, 2006, 21(2): 488-492.[11] GONG Y S, TU R, GOTO T. High-speed deposition of oriented TiNx films by laser metal-organic chemical vapor deposition. Journal of Inorganic Materials, 2010, 25(4): 391-395.[12] ZHANG S, ZHANG C H, WU W T, et al. An in situ formed TiC particle reinforcement composite coating induced by laser melting on surface of alloy Ti6Al4V and its wearing performance. Acta Metall. Sinica, 2001, 37(3): 315-320.[13] GUO C, ZHOU J, ZHAO J, et al. Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate. Appl. Surf. Sci., 2011, 257(9): 4398-4405.[14] GUO B, ZHOU J, ZHANG S, et al. Phase composition and tribological properties of Ti–Al coatings produced on pure Ti by laser cladding. Appl. Surf. Sci., 2007, 253(24): 9301-9310.[15] GUO C, ZHOU J, ZHAO J, et al. Improvement of the oxidation and wear resistance of pure Ti by laser-cladding Ti3Al coating at elevated temperature. Tribol. Lett., 2011, 42(2): 151-159.[16] GU D D, SHEN Y F. Microstructure of in situ TiN-Ti5Si3 composites prepared by selective laser melting. Acta Metall Sinica, 2010, 46(6): 761-768.[17] Counihan P J, Crawford A, Thadhani N N. Influence of dynamic densification on nanostructure formation in Ti5Si3 intermetallic alloy and its bulk properties. Mater. Sci. Eng. A , 1999, 267: 26-35.[18] GU D D, HAGEDORN Y C, MEINERS W, et al. Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance. Surf. Coat. Technol., 2011, 205(10): 3285-3292.[19] WANG H M, LIU Y F. Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy. Mater. Sci. Eng. A , 2002, 338:126-132.[20] LIU X, WANG H. Microstructure, wear and high-temperature oxidation resistance of laser clad Ti5Si3/γ/TiSi composite coatings on γ-TiAl intermetallic alloy. Surf. Coat. Technol., 2006, 200(14/15): 4462-4470.[21] RAO K, ZHOU J. Characterization and mechanical properties of in situ synthesized Ti5Si3/TiAl composites. Mater. Sci. Eng. A, 2003, 356(1/2): 208-218.[22] GUO C, ZHOU J, ZHAO J, et al. Microstructure and tribological properties of ZrB2-containing composite coating produced on pure Ti Substrate by laser surface alloying. J. Tribol., 2011, 133(1): 011301-1-7. [23] Selvan J S, Subramanian K, Nath A K, et al. Laser boronising of Ti-6Al-4V as a result of laser alloying with pre-placed BN. Mater. Sci. Eng. A , 1999, 260(1/2): 178--87.[24] Eskin S, Zahavi J, Berner A. CO2-Laser nitriding as a result of Ti coating modification in a nitrogen atmosphere. 1. Features of nitriding process. Laser Eng., 1995, 4(2): 85-96.[25] YAN M, LIU B, LI J. 中国航空材料手册, 第四卷. 北京: 中国标准出版社, 2001: 8-21. [26] PEI Y T, OUYANG J H, LEI T Q. Developments of laer clad composite coatings. Journal of Harbin Institute of Technology, 1994, 26(1): 73-80.[27] BLAU P J. Metals Handbook, 10th Edition. USA:The Materials Information Society, 1990: 414-418.[28] LA P, XUE Q, LIU W. Effects of boron doping on tribological properties of Ni3Al-Cr7C3 coatings under dry sliding. Wear, 2001, 249(1/2): 94-100.[29] ARCHARD J F. Contact and rubbing of flat surfaces. J .Appl. Phys., 1953, 24(8): 981-988.[30] CHU C L, WU S K. A study on the dry uni-directional sliding behaviour of tiatnium aluminides. Scripta Matall Mater., 1999, 33(1): 139-143.[31] BHUSHAN B. Introduction to Tribology. New York:John Wiley & Sons, 2002: 210-212. |