Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (5): 544-552.DOI: 10.15541/jim20220532
Special Issue: 【结构材料】热障与环境障涂层(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
FAN Dong1,2(), ZHONG Xin1(
), WANG Yawen1, ZHANG Zhenzhong2(
), NIU Yaran1, LI Qilian3, ZHANG Le3, ZHENG Xuebin1
Received:
2022-09-13
Revised:
2022-10-06
Published:
2022-10-28
Online:
2022-10-28
Contact:
ZHONG Xin, assistant professor. E-mail: zhongxin@mail.sic.ac.cn;About author:
FAN Dong (1998-), male, Master candidate. E-mail: fandong1998@126.com
Supported by:
CLC Number:
FAN Dong, ZHONG Xin, WANG Yawen, ZHANG Zhenzhong, NIU Yaran, LI Qilian, ZHANG Le, ZHENG Xuebin. Corrosion Behavior and Mechanism of Aluminum-rich CMAS on Rare-earth Silicate Environmental Barrier Coatings:[J]. Journal of Inorganic Materials, 2023, 38(5): 544-552.
Parameter | RE2SiO5 (RE=Gd, Y, Er) |
---|---|
Primary Ar/(L·min-1) | 43 |
Secondary H2/(L·min-1) | 12 |
Carrier Ar/(L·min-1) | 2.3 |
Spray distance/mm | 230 |
Table 1 Technical parameters used for plasma spraying
Parameter | RE2SiO5 (RE=Gd, Y, Er) |
---|---|
Primary Ar/(L·min-1) | 43 |
Secondary H2/(L·min-1) | 12 |
Carrier Ar/(L·min-1) | 2.3 |
Spray distance/mm | 230 |
XRF/(%,in mol) | CaO | MgO | AlO1.5 | SiO2 |
---|---|---|---|---|
CMAS | 27.87 | 8.79 | 26.22 | 38.52 |
Table 2 Chemical compositions of CMAS powders
XRF/(%,in mol) | CaO | MgO | AlO1.5 | SiO2 |
---|---|---|---|---|
CMAS | 27.87 | 8.79 | 26.22 | 38.52 |
EDS/ (%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 20.60 | — | — | 19.62 | 51.73 | 8.02 | — | — |
Point 2 | — | 26.04 | — | 17.55 | 50.57 | 5.83 | — | — |
Point 3 | — | — | 26.95 | 15.16 | 50.78 | 7.10 | — | — |
Point 4 | — | 14.03 | — | 5.72 | 52.27 | 4.01 | 20.31 | 3.66 |
Table 3 EDS elemental compositions of the marked regions in Fig. 3
EDS/ (%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 20.60 | — | — | 19.62 | 51.73 | 8.02 | — | — |
Point 2 | — | 26.04 | — | 17.55 | 50.57 | 5.83 | — | — |
Point 3 | — | — | 26.95 | 15.16 | 50.78 | 7.10 | — | — |
Point 4 | — | 14.03 | — | 5.72 | 52.27 | 4.01 | 20.31 | 3.66 |
EDS/(%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 19.21 | — | —- | 11.70 | 60.65 | 8.44 | — | — |
Point 2 | 1.16 | — | — | 13.06 | 59.37 | 13.78 | 10.18 | 2.45 |
Point 3 | — | 15.29 | — | 16.00 | 61.82 | 6.89 | — | — |
Point 4 | — | 7.18 | — | 15.50 | 50.17 | 9.58 | 12.14 | 5.43 |
Point 5 | — | 0.96 | — | 13.56 | 59.62 | 13.03 | 10.40 | 2.42 |
Point 6 | — | — | 20.27 | 12.11 | 61.12 | 6.50 | — | — |
Point 7 | — | — | 8.70 | 10.95 | 59.15 | 8.09 | 10.95 | 4.65 |
Point 8 | — | — | 0.92 | 3.29 | 58.74 | 19.61 | 3.29 | 2.07 |
Table 4 EDS elemental compositions of the marked regions in Fig. 4
EDS/(%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 19.21 | — | —- | 11.70 | 60.65 | 8.44 | — | — |
Point 2 | 1.16 | — | — | 13.06 | 59.37 | 13.78 | 10.18 | 2.45 |
Point 3 | — | 15.29 | — | 16.00 | 61.82 | 6.89 | — | — |
Point 4 | — | 7.18 | — | 15.50 | 50.17 | 9.58 | 12.14 | 5.43 |
Point 5 | — | 0.96 | — | 13.56 | 59.62 | 13.03 | 10.40 | 2.42 |
Point 6 | — | — | 20.27 | 12.11 | 61.12 | 6.50 | — | — |
Point 7 | — | — | 8.70 | 10.95 | 59.15 | 8.09 | 10.95 | 4.65 |
Point 8 | — | — | 0.92 | 3.29 | 58.74 | 19.61 | 3.29 | 2.07 |
EDS/ (%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 24.48 | — | — | 16.22 | 51.61 | 7.68 | — | — |
Point 2 | 1.05 | — | — | 12.62 | 59.63 | 14.25 | 9.78 | 2.66 |
Point 3 | — | 26.70 | — | 15.78 | 50.12 | 7.40 | — | — |
Point 4 | — | 17.10 | — | 8.23 | 51.25 | 2.92 | 16.41 | 4.09 |
Point 5 | — | 0.94 | — | 14.23 | 57.36 | 13.94 | 11.98 | 1.54 |
Point 6 | — | — | 28.80 | 12.77 | 52.22 | 6.22 | — | — |
Point 7 | — | — | 7.12 | 13.05 | 49.26 | 7.08 | 18.26 | 5.24 |
Table 5 EDS elemental compositions of the marked regions in Fig. 5
EDS/ (%, in atom) | Gd | Y | Er | Si | O | Ca | Al | Mg |
---|---|---|---|---|---|---|---|---|
Point 1 | 24.48 | — | — | 16.22 | 51.61 | 7.68 | — | — |
Point 2 | 1.05 | — | — | 12.62 | 59.63 | 14.25 | 9.78 | 2.66 |
Point 3 | — | 26.70 | — | 15.78 | 50.12 | 7.40 | — | — |
Point 4 | — | 17.10 | — | 8.23 | 51.25 | 2.92 | 16.41 | 4.09 |
Point 5 | — | 0.94 | — | 14.23 | 57.36 | 13.94 | 11.98 | 1.54 |
Point 6 | — | — | 28.80 | 12.77 | 52.22 | 6.22 | — | — |
Point 7 | — | — | 7.12 | 13.05 | 49.26 | 7.08 | 18.26 | 5.24 |
Fig. 6 Schematic diagrams of different coatings under CMAS molten salt corrosion at 1400 ℃ (a) Reaction process; (b) X1-Gd2SiO5; (c) X2-Y2SiO5; (d) X2-Er2SiO5
[1] |
PADTURE N P. Advanced structural ceramics in aerospace propulsion. Nature Materials, 2016, 15(8): 804.
DOI PMID |
[2] |
RAJ R. Fundamental research in structural ceramics for service near 2000 ℃. Journal of the American Ceramic Society, 1993, 76(9): 2147.
DOI URL |
[3] |
EATON H E, LINSEY G D. Accelerated oxidation of SiC CMC's by water vapor and protection via environmental barrier coating approach. Journal of the European Ceramic Society, 2002, 22(14-15): 2741.
DOI URL |
[4] |
LIU P P, ZHONG X, ZHANG L, et al. Molten salt corrosion behaviors and mechanisms of ytterbium silicate environmental barrier coating. Journal of Inorganic Materials, 2022, 37(12): 1267.
DOI |
[5] |
OPILA E J. Oxidation and volatilization of silica formers in water vapor. Journal of the American Ceramic Society, 2003, 86(8): 1238.
DOI URL |
[6] |
ZHANG X F, SONG J B, DENG Z Q, et al. Interface evolution of Si/Mullite/Yb2SiO5 PS-PVD environmental barrier coatings under high temperature. Journal of the European Ceramic Society, 2020, 40(4): 1478.
DOI URL |
[7] |
TIAN Z L, ZHENG L Y, WANG J M, et al. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE= Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. Journal of the European Ceramic Society, 2016, 36(1): 189.
DOI URL |
[8] |
ZHANG X F, ZHOU K S, LIU M, et al. Preparation of Si/Mullite/Yb2SiO5environment barrier coating (EBC) by plasma spray-physical vapor deposition (PS-PVD). Journal of Inorganic Materials, 2018, 33(3): 325.
DOI URL |
[9] | SUMMERS W D, POERSCHKE D L, TAYLOR A A, et al. Reactions of molten silicate deposits with yttrium monosilicate. Journal of the European Ceramic Society, 2020, 103(4): 2919. |
[10] |
STOLZENBURG F, KENESEI P, ALMER J, et al. The influence of calcium-magnesium-aluminosilicate deposits on internal stresses in Yb2Si2O7 multilayer environmental barrier coatings. Acta Materialia, 2016, 105: 189.
DOI URL |
[11] | WANG C, ZHANG X F, ZHOU K S, et al. Nano-composite structured environmental barrier coatings prepared by plasma spray- physical vapor deposition and their thermal cycle performance. Rare Metal Materials and Engineering, 2019, 48(11): 3455. |
[12] |
LI G, QIN L, CAO X Q, et al. Water vapor corrosion resistance and failure mechanism of SiCf/SiC composites completely coated with plasma sprayed tri-layer EBCs. Ceramics International, 2022, 48(5): 7082.
DOI URL |
[13] |
LEE K N. Yb2Si2O7 Environmental barrier coatings with reduced bond coat oxidation rates via chemical modifications for long life. Journal of the American Ceramic Society, 2019, 102(3): 1507.
DOI URL |
[14] |
WANG J G, TIAN S J, LI G B, et al. Preparation and X-ray characterization of low-temperature phases of R2SiO5 (R=rare earth elements). Materials of Research Bulletin, 2001, 36: 1855.
DOI URL |
[15] |
WOLF M, MACK D E, GUILLO O, et al. Resistance of pure and mixed rare earth silicates against calcium-magnesium- aluminosilicate (CMAS): a comparative study. Journal of the American Ceramic Society, 2020, 103(12): 7056.
DOI URL |
[16] |
JIANG F R, CHENG L F, WANG Y G. Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium- aluminosilicate attack. Ceramics International, 2017, 43(12): 9019.
DOI URL |
[17] |
ZHONG X, WANG Y W, LIU P P, et al. Effects of microstructure on corrosion behaviors for RE2SiO5 (RE=Gd, Y, Er) environmental barrier coatings against calcium-magnesium-alumino-silicate melts. Corrosion Science, 2022, 199: 110174.
DOI URL |
[18] |
TIAN Z L, REN X M, LEI Y M, et al. Corrosion of RE2Si2O7 (RE = Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures. Journal of the European Ceramic Society, 2019, 39(14): 4245.
DOI URL |
[19] |
LIU P P, ZHONG X, NIU Y R, et al. Reaction behaviors and mechanisms of tri-layer Yb2SiO5/Yb2Si2O7/Si environmental barrier coatings with molten calcium-magnesium-alumino-silicate. Corrosion Science, 2022, 197: 110069.
DOI URL |
[20] |
STOKES J L, HARDER B J, WIESNER V L, et al. Effects of crystal structure and cation size on molten silicate reactivity with environmental barrier coating materials. Journal of the American Ceramic Society, 2019, 103(1): 622.
DOI URL |
[21] |
SUMMERS W D, POERSCHKE D L, PARK D, et al. Roles of composition and temperature in silicate deposit-induced recession of yttrium disilicate. Acta Materialia, 2018, 160: 34.
DOI URL |
[22] |
LEVI C G, JOHN W H, MARIE V S, et al. Environmental degradation of thermal barrier coatings by molten deposits. MRS Bulletin, 2012, 37: 932.
DOI URL |
[23] |
BONDAR I A, Rare-earth silicates. Ceramics International, 1982, 8: 83.
DOI URL |
[24] | FELSCHE J. The crystal chemistry of the rare-earth silicates. Materials Science and Chemistry, 1973, 13: 99. |
[25] |
ZHONG X, NIU Y R, LI H, et al. Microstructure evolution and thermomechanical properties of plasma-sprayed Yb2SiO5 coating during thermal aging. Journal of the American Ceramic Society. 2017, 100(5): 1896.
DOI URL |
[26] |
POERSCHKE D L, JACKSON R W, LEVI C G. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annual Review of Materials Research, 2017, 47: 297.
DOI URL |
[27] |
LI Y R, WANG J M, WANG J Y. Theoretical investigation of phonon contributions to thermal expansion coefficients for rare earth monosilicates RE2SiO5 (RE = Dy, Ho, Er, Tm, Yb and Lu). Journal of the European Ceramic Society, 2020, 40(7): 2658.
DOI URL |
[1] | LI Liuyuan, HUANG Kaiming, ZHAO Xiuyi, LIU Huichao, WANG Chao. Influence of RE-Si-Al-O Glass Phase on Microstructure and CMAS Corrosion Resistance of High Entropy Rare Earth Disilicates [J]. Journal of Inorganic Materials, 2024, 39(7): 793-802. |
[2] | LI Jie, LUO Zhixin, CUI Yang, ZHANG Guangheng, SUN Luchao, WANG Jingyang. CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2024, 39(6): 671-680. |
[3] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[4] | TAO Shunyan, YANG Jiasheng, SHAO Fang, WU Yingchen, ZHAO Huayu, DONG Shaoming, ZHANG Xiangyu, XIONG Ying. Thermal Spray Coatings for Aircraft CMC Hot-end Components: Opportunities and Challenges [J]. Journal of Inorganic Materials, 2024, 39(10): 1077-1083. |
[5] | LUO Shuwen, MA Mingsheng, LIU Feng, LIU Zhifu. Corrosion Behavior and Mechanism of LTCC Materials in Ca-B-Si System [J]. Journal of Inorganic Materials, 2023, 38(5): 553-560. |
[6] | LIU Pingping, ZHONG Xin, ZHANG Le, LI Hong, NIU Yaran, ZHANG Xiangyu, LI Qilian, ZHENG Xuebin. Molten Salt Corrosion Behaviors and Mechanisms of Ytterbium Silicate Environmental Barrier Coating [J]. Journal of Inorganic Materials, 2022, 37(12): 1267-1274. |
[7] | SUN Luchao, REN Xiaomin, DU Tiefeng, LUO Yixiu, ZHANG Jie, WANG Jingyang. High Entropy Engineering: New Strategy for the Critical Property Optimizations of Rare Earth Silicates [J]. Journal of Inorganic Materials, 2021, 36(4): 339-346. |
[8] | FAN Jia-Feng,ZHANG Xiao-Feng,ZHOU Ke-Song,LIU Min,DENG Chang-Guang,DENG Chun-Ming,NIU Shao-Peng,DENG Zi-Qian. Influence of Al-modification on CMAS Corrosion Resistance of PS-PVD 7YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2019, 34(9): 938-946. |
[9] | WANG Peng, WANG Qing-Lei, ZHANG Xiang-Yu, YANG Jin-Shan, ZHOU Hai-Jun, HU Jian-Bao, DING Yu-Sheng, DONG Shao-Ming. Oxidation Behavior of SiCf/SiC Composites Modified by Layered-Y2Si2O7 in Wet Oxygen Environment [J]. Journal of Inorganic Materials, 2019, 34(8): 904-908. |
[10] | ZHANG Xiao-Feng, ZHOU Ke-Song, LIU Min, DENG Chun-Ming, NIU Shao-Peng, XU Shi-Ming. Preparation of Si/Mullite/Yb2SiO5 Environment Barrier Coating (EBC) by Plasma Spray-Physical Vapor Deposition (PS-PVD) [J]. Journal of Inorganic Materials, 2018, 33(3): 325-330. |
[11] | ZHANG Xiao-Feng, ZHOU Ke-Song, SONG Jin-Bing, DENG Chun-Ming, NIU Shao-Peng, DENG Zi-Qian. Deposition and CMAS Corrosion Mechanism of 7YSZ Thermal Barrier Coatings Prepared by Plasma Spray-Physical Vapor Deposition [J]. Journal of Inorganic Materials, 2015, 30(3): 287-293. |
[12] | LU Lin-Jing, CHENG Lai-Fei, HONG Zhi-Liang, WANG Yi-Guang, ZHANG Li-Tong. Fabrication and Water-vapor Corrosion Resistance of Ba0.25Sr0.75Al2Si2O8 Environmental Barrier Coating [J]. Journal of Inorganic Materials, 2011, 26(7): 701-706. |
[13] | WU Jiang,LIN Hong,LI Jian-Bao,LI Jun-Feng. Corrosion Behavior of AlNbO4/Mullite Composite as Environmental Barrier Coating in Water Vapor Environment [J]. Journal of Inorganic Materials, 2010, 25(4): 445-448. |
[14] | HONG Zhi-Liang,CHENG Lai-Fei,LU Lin-Jing,ZHANG Li-Tong,WANG Yi-Guang. Corrosion Behavior of Lu-Si-O System in Water Vapor [J]. Journal of Inorganic Materials, 2010, 15(2): 186-190. |
[15] | CHEN Xian-Hong,CHENG Lai-Fei,WANG Yi-Guang,ZHANG Li-Tong,HONG Zhi-Liang,WU Ya-Hui. Corrosion Behavior of AlPO4 as Environmental Barrier Coating in Water Vapor Enviroment [J]. Journal of Inorganic Materials, 2009, 24(2): 397-401. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||