Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (11): 1355-1363.DOI: 10.15541/jim20230118
Special Issue: 【信息功能】敏感陶瓷(202409); 【信息功能】电致变色与热致变色材料(202312)
• RESEARCH ARTICLE • Previous Articles Next Articles
CHEN Zhang(), ZHAO Ruoyi, HAN Shaojie, WANG Huanran, YANG Qun, GAO Yanfeng(
)
Received:
2023-03-08
Revised:
2023-04-04
Published:
2023-08-31
Online:
2023-08-31
Contact:
GAO Yanfeng, professor. E-mail: yfgao@shu.edu.cnAbout author:
CHEN Zhang (1985-), male, PhD, associate professor. E-mail: chenzhang@shu.edu.cn
Supported by:
CLC Number:
CHEN Zhang, ZHAO Ruoyi, HAN Shaojie, WANG Huanran, YANG Qun, GAO Yanfeng. Electrochromic WO3 Thin Films: Preparation by Nanocrystalloid Liquid Phase Coating and Performance Optimization[J]. Journal of Inorganic Materials, 2023, 38(11): 1355-1363.
Fig. 2 Morphology analyses and XRD patterns of WO3 powders after annealed at different temperatures (a-d) Digital photographs; (e) XRD patterns and (g-j) SEM images of WO3 powders; (f) SEM image of WO3 powders without CTAB
Fig. 5 Pictures of WO3 annealed at different temperatures (a-d) Digital photographs of WO3 dispersions and (e-g) TEM images at (a, g) 500, (b, f) 600, (c, e) 700, and (d) 800 ℃
WO3 thin film | ΔT/% | (tc/tb)/s | CE/(cm2·C-1) |
---|---|---|---|
W500 | 72.8 | 11/12 | 52.6 |
W600 | 75.3 | 8/10 | 54.3 |
W700 | 78.6 | 7/6 | 64.8 |
W800 | 75.2 | 13/12 | 61.2 |
Table 1 Electrochromic properties of tungsten oxide films annealed at different temperatures
WO3 thin film | ΔT/% | (tc/tb)/s | CE/(cm2·C-1) |
---|---|---|---|
W500 | 72.8 | 11/12 | 52.6 |
W600 | 75.3 | 8/10 | 54.3 |
W700 | 78.6 | 7/6 | 64.8 |
W800 | 75.2 | 13/12 | 61.2 |
Fig. 8 Electrochemical performances of thin film W700 (a) Transmittance spectra; (b) Coloring efficiency plot; (c) Cyclic transmittance curves; (d) Chronograph current curve
Fig. 10 Optical performance of thin films made from dispersions before (a, b) and after (c, d) hydrothermal treatment (a, c) Cyclic transmittance curves ; (b, d) Coloring efficiency plots
[1] | GRANQVIST C G. Solar energy materials. Advanced Materials, 2003, 15(21): 1248. |
[2] |
BEAUJUGE P M, REYNOLD J R. Color control in pi-conjugated organic polymers for use in electrochromic devices. Chemical Reviews, 2010, 110(1): 268.
DOI PMID |
[3] |
MCEVOY T M, STEVENSON K J, HUPP J T, et al. Electrochemical preparation of molybdenum trioxide thin films: effect of sintering on electrochromic and electroinsertion properties. Langmuir, 2016, 19(10): 4316.
DOI URL |
[4] |
GRANQVIST C G. Progress in electrochromics: tungsten oxide revisited. Electrochimica Acta, 1999, 44(18): 3005.
DOI URL |
[5] |
GRANQVIST C G. Electrochromic materials: out of a niche. Nature Materials, 2006, 5(2): 89.
DOI |
[6] |
GRANQVIST C G. Oxide electrochromics: an introduction to devices and materials. Solar Energy Materials & Solar Cells, 2012, 99(4): 1.
DOI URL |
[7] |
WEN R T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nature Materials, 2015, 14(10): 996.
DOI |
[8] |
XIA X, CHAO D, QI X, et al. Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Letters, 2013, 13(9): 4562.
DOI PMID |
[9] |
MORTIMER R J, DYER A L, REYNOLDS J R. Electrochromic organic and polymeric materials for display applications. Displays, 2006, 27(1): 2.
DOI URL |
[10] | MA D, WANG J, ENGINEERING E M, et al. Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Science China (Chemistry), 2017, 60(1): 9. |
[11] | GILLASPIE D T, TENENT R C, DILLON A C. Metal-oxide films for electrochromic applications: present technology and future directions. Journal of Materials Chemistry, 2010, 20(1): 168. |
[12] | CHEN G X, MIYAUCHI M, SHIMIZU H. UV-induced surface electrical conductivity jump of polymer nanocomposites. Applied Physics Letters, 2008, 92(20): 787. |
[13] | ZHU W, LIU J, YU S, et al. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. Journal of Hazardous Materials, 2016, 2016(1): 407. |
[14] |
LI Y, LI X, YANG C, et al. Controlled synthesis of CdS nanorods and hexagonal nanocrystals. Journal of Materials Chemistry, 2003, 13(10): 2641.
DOI URL |
[15] |
DEEPA M, SINGH D P, SHIVAPRASAD S M, et al. A comparison of electrochromic properties of Sol-Gel derived amorphous and nanocrystalline tungsten oxide films. Current Applied Physics, 2007, 7(2): 220.
DOI URL |
[16] | CHEN X C, LI Y G, WANG H Z, et al. Morphology regulation and photoelectric performance of hole transport layer WO3 for QLED. Journal of the Chinese Ceramic Society, 2014, 33(5): 1141. |
[17] |
GUO Y, MURATA N, ONO K, et al. Production of ultrafine particles of high-temperature tetragonal WO3 by dc arc discharge in Ar-O2 gases. Journal of Nanoparticle Research, 2005, 7(1): 101.
DOI URL |
[18] | JIAO Z H, SUN X W. Hydrothermally grown nanostructured tungsten trioxide (hydrate) films and their photocatalytic properties. MRS Proceedings, 2012, 1406: mrsf11-1406-z18-16. |
[19] | CAI W L, SU X T, WANG J D. Surfactant-assisted ultrasonic synthesis of nano-tungsten oxide powder. China Tungsten Industry, 2008, 14(6): 26. |
[20] | ZHOU D, SHI F, XIE D, et al. Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. Journal of Colloid and Interface Science, 2016, 465(112): 120. |
[21] |
CAI G F, TU J P, ZHOU D, et al. The direct growth of a WO3 nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications. CrystEngComm, 2014, 16(30): 6866.
DOI URL |
[22] | MORALES A E, MORA E S, PAL U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Sociedad Mexicana de Física A.C, 2007, 53(5): 18. |
[23] | LEE Y, LEE T, JANG W, et al. Unraveling the intercalation chemistry of hexagonal tungsten bronze and its optical responses. Chemistry of Materials, 2016, 28(13): 286. |
[24] | YAO Y, ZHAO Q, WEI W, et al. WO3 quantum-dots electrochromism. Nano Energy, 2019, 68(10): 43. |
[25] | ZHAO Q, FANG Y, QIAO K, et al. Printing of WO3/ITO nanocomposite electrochromic smart windows. Solar Energy Materials & Solar Cells, 2019, 2(2): 95. |
[26] | PAIK T, CARGNELLO M, GORDON T R, et al. Photocatalytic hydrogen evolution from substoichiometric colloidal WO3-x nanowires. ACS Energy Letters, 2018, 3(8): 19. |
[1] | ZHEN Mingshuo, LIU Xiaoran, FAN Xiangqian, ZHANG Wenping, YAN Dongdong, LIU Lei, LI Chen. Electrochromic Intelligent Visual Humidity Indication System [J]. Journal of Inorganic Materials, 2024, 39(4): 432-440. |
[2] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[3] | NIU Haibin, HUANG Jiahui, LI Qianwen, MA Dongyun, WANG Jinmin. Directly Hydrothermal Growth and Electrochromic Properties of Porous NiMoO4 Nanosheet Films [J]. Journal of Inorganic Materials, 2023, 38(12): 1427-1433. |
[4] | SUN Jiawei, WAN Xinyi, YANG Ting, MA Dongyun, WANG Jinmin. Preparation and Electrochromic Properties of Ti2Nb10O29 Films [J]. Journal of Inorganic Materials, 2023, 38(12): 1434-1440. |
[5] | HUANG Zhihang, TENG Guanhongwei, TIE Peng, FAN Desong. Electrochromic Property of Perovskite Ceramic Films [J]. Journal of Inorganic Materials, 2022, 37(6): 611-616. |
[6] | ZHANG Xiang, LI Wenjie, WANG Lebin, CHEN Xi, ZHAO Jiupeng, LI Yao. Reflective Property of Inorganic Electrochromic Materials [J]. Journal of Inorganic Materials, 2021, 36(5): 451-460. |
[7] | WANG Tianyue, WANG Mengying, HUANG Qingjiao, YANG Jiaming, WANG Shunhua, DIAO Xungang. Preparation of Lithium Titanate Thin Film for Electrochromic Smart Window by Sol-Gel Spin Coating Method [J]. Journal of Inorganic Materials, 2021, 36(5): 471-478. |
[8] | JIA Hanxiang, SHAO Zewei, HUANG Aibin, JIN Pingshi, CAO Xun. Sandwich Structured Electrolyte of High Sputtering Efficiency for All-solid-state Electrochromic Devices by Optical Design [J]. Journal of Inorganic Materials, 2021, 36(5): 479-484. |
[9] | XIONG Jinyan, LUO Qiang, ZHAO Kai, ZHANG Mengmeng, HAN Chao, CHENG Gang. Facilely Anchoring Cu nanoparticles on WO3 Nanocubes for Enhanced Photocatalysis through Efficient Interface Charge Transfer [J]. Journal of Inorganic Materials, 2021, 36(3): 325-331. |
[10] | FANG Huajing, ZHAO Zetian, WU Wenting, WANG Hong. Progress in Flexible Electrochromic Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 140-151. |
[11] | ZHOU Kailing, WANG Hao, ZHANG Qianqian, LIU Jingbing, YAN Hui. Dynamic Process of Ions Transport and Cyclic Stability of WO3 Electrochromic Film [J]. Journal of Inorganic Materials, 2021, 36(2): 152-160. |
[12] | ZHAO Qi, QIAO Ke, YAO Yongji, CHEN Zhang, CHEN Dongchu, GAO Yanfeng. High-conductivity Hydrophobic Fumed-SiO2 Composite Gel Electrolyte for High Performance Electrochromic Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 161-167. |
[13] | ZHONG Xiaolan, LIU Xueqing, DIAO Xungang. Electrochromic Devices Based on Tungsten Oxide and Nickel Oxide: a Review [J]. Journal of Inorganic Materials, 2021, 36(2): 128-139. |
[14] | JI Bang, ZHAO Wenfeng, DUAN Jieli, MA Lizhe, FU Lanhui, YANG Zhou. Synthesis of TiO2/WO3 on Nickel Foam for the Photocatalytic Degradation of Ethylene [J]. Journal of Inorganic Materials, 2020, 35(5): 581-588. |
[15] | JIA Hanxiang, CAO Xun, JIN Pingshi. Advances in Inorganic All-solid-state Electrochromic Materials and Devices [J]. Journal of Inorganic Materials, 2020, 35(5): 511-524. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||