 
 Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (6): 687-692.DOI: 10.15541/jim20220696
Special Issue: 【信息功能】发光材料与器件(202506)
• RESEARCH LETTER • Previous Articles Next Articles
					
													YANG Yingkang1( ), SHAO Yiqing1, LI Bailiang1, LÜ Zhiwei1, WANG Lulu2, WANG Liangjun1, CAO Xun1,2, WU Yuning1, HUANG Rong1,3(
), SHAO Yiqing1, LI Bailiang1, LÜ Zhiwei1, WANG Lulu2, WANG Liangjun1, CAO Xun1,2, WU Yuning1, HUANG Rong1,3( ), YANG Chang1(
), YANG Chang1( )
)
												  
						
						
						
					
				
Received:2022-11-21
															
							
																	Revised:2022-12-26
															
							
															
							
																	Published:2023-02-13
															
							
																	Online:2023-02-13
															
						Contact:
								HUANG Rong, professor. E-mail: rhuang@ee.ecnu.edu.cn;About author:YANG Yingkang (2002-), female, Bachelor. E-mail: 10192100516@stu.ecnu.edu.cn				
													Supported by:CLC Number:
YANG Yingkang, SHAO Yiqing, LI Bailiang, LÜ Zhiwei, WANG Lulu, WANG Liangjun, CAO Xun, WU Yuning, HUANG Rong, YANG Chang. Enhanced Band-edge Luminescence of CuI Thin Film by Cl-doping[J]. Journal of Inorganic Materials, 2023, 38(6): 687-692.
 
																													Fig. 1 Typical SEM images of the Cl-doped CuI thin film (a) Low magnification; (b) High magnification; (c) High magnification image of the bright region; (d) High magnification image of the dark region
 
																													Fig. 2 EDS analyses of the Cl-doped CuI thin film (a) SEM image of the mapping area; (b) Typical EDS spectra obtained from the bright region and the dark region; (c) EDS mappings of Cu, I, Cl and Si
 
																													Fig. 3 CL analyses of the Cl-doped CuI thin film (a) SEM image; (b) Panchromatic CL image; (c) Typical CL spectra acquired from the bright region and the dark region
 
																													Fig. 4 Calculated formation energies of ClI and the most intrinsic defects in CuI as functions of the Fermi level (a) Cu-rich condition; (b) I-rich condition
| [1] | GRUNDMANN M, SCHEIN F L, LORENZ M, et al.  Cuprous iodidea p-type transparent semiconductor: history and novel applications. Physica Status Solidi (a), 2013, 210(9):1671. DOI URL | 
| [2] | YANG C, KNEIΒ M, LORENZ M, et al.  Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit. Proceedings of the National Academy of Sciences, 2016, 113(46):12929. DOI URL | 
| [3] | YANG Z, WANG M, SHUKLA S, et al.  Developing seedless growth of ZnO micro/nanowire arrays towards ZnO/FeS2/CuI P-I- N photodiode application. Scientific Reports, 2015, 5(1):11377. DOI | 
| [4] | ZHOU Z, LI X, ZHAO F, et al.  Self-powered heterojunction photodetector based on thermal evaporated p-CuI and hydrothermal synthesised n-TiO2 nanorods. Optical Materials Express, 2022, 12(2):392. DOI URL | 
| [5] | NIU S, ZHAO F, HANG Y, et al.  Enhanced p-CuI/n-ZnO photodetector based on thermal evaporated CuI and pulsed laser deposited ZnO nanowires. Optics Letters, 2020, 45(2):559. DOI URL | 
| [6] | LESCOP C. Coordination-driven supramolecular synthesis based on bimetallic Cu(I) precursors: adaptive behavior and luminescence. The Chemical Record, 2020, 21(3):544. DOI URL | 
| [7] | INAGAKI S, NAKAMURA M, OKAMURA Y, et al. Heteroepitaxial growth of wide bandgap cuprous iodide films exhibiting clear free-exciton emission. Applied Physics Letters, 2021, 118(1):012103. DOI URL | 
| [8] | YANG C, SOUCHAY D, KNEISS M, et al.  Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nature Communications, 2017, 8: 16076. DOI PMID | 
| [9] | AHN D, SONG J D, KANG S S, et al.  Intrinsically p-type cuprous iodide semiconductor for hybrid light-emitting diodes. Scientific Reports, 2020, 10(1):3995. DOI PMID | 
| [10] | YANG C, KNEIß M, SCHEIN F L, et al.  Room-temperature domain-epitaxy of copper iodide thin films for transparent CuI/ZnO heterojunctions with high rectification ratios larger than 109. Scientific Reports, 2016, 6(1):21937. DOI | 
| [11] | VENKATA KRISHNA RAO R, RANADE A K, DESAI P, et al.  Temperature-dependent device properties of γ-CuI and β-Ga2O3 heterojunctions. SN Applied Sciences, 2021, 3(10):796. DOI | 
| [12] | PERERA V P S, TENNAKONE K. Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector. Solar Energy Materials and Solar Cells, 2003, 79(2):249. DOI URL | 
| [13] | LI F, GU M, LIU X, et al.  Enhancement of the near-band-edge emission of CuI by Cl doping. Journal of Luminescence, 2019, 205: 337. DOI | 
| [14] | GAO P, GU M, LIU X, et al.  Crystal growth and luminescence properties of CuI single crystals. Optik, 2014, 125(3):1007. DOI URL | 
| [15] | YU W, BENNDORF G, JIANG Y, et al.  Control of optical absorption and emission of sputtered copper iodide thin films. Physica Status Solidi (RRL) - Rapid Research Letters, 2020, 15(1):2000431. DOI URL | 
| [16] | CHEN C, LI R H, ZHU B S, et al.  Highly luminescent inks: aggregation-induced emission of copper-iodine hybrid clusters. Angewandte Chemie International Edition, 2018, 57(24):7106. DOI URL | 
| [17] | AHN D, PARK S H. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes. Scientific Reports, 2016, 6: 20718. DOI PMID | 
| [18] | COWLEY A, FOY B, DANILIEUK D, et al.  UV emission on a Si substrate: optical and structural properties of γ-CuCl on Si grown using liquid phase epitaxy techniques. Physica Status Solidi (a), 2009, 206: 923. DOI URL | 
| [19] | FERHAT M, ZAOUI A, CERTIER M, et al.  Electronic structure of the copper halides CuCl, CuBr and CuI. Materials Science and Engineering B, 1996, 39: 95. DOI URL | 
| [20] | HOHENBERG P, KOHN W. Inhomogeneous electron gas. Physical Review, 1964, 136(3B):B864. DOI URL | 
| [21] | KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A):A1133. DOI URL | 
| [22] | GIANNOZZI P, BARONI S, BONINI N, et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 2009, 21(39):395502. DOI URL | 
| [23] | PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18):3865. DOI PMID | 
| [24] | HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential. The Journal of Chemical Physics, 2003, 118(18):8207. DOI URL | 
| [25] | MAKOV G, SHAH R, PAYNE M C. Periodic boundary conditions in ab initio calculations. II. Brillouin-zone sampling for aperiodic systems. Physical Review B, 1996, 53(23):15513. DOI URL | 
| [26] | LANY S, ZUNGER A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Physical Review B, 2008, 78(23):235104. DOI URL | 
| [27] | FREYSOLDT C, GRABOWSKI B, HICKEL T, et al.  First-principles calculations for point defects in solids. Reviews of Modern Physics, 2014, 86(1):253. DOI URL | 
| [28] | CHEN H, WANG C Y, WANG J T, et al.  First-principles study of point defects in solar cell semiconductor CuInS2. Journal of Applied Physics, 2012, 112(8):084513. DOI URL | 
| [29] | CHOI J H, ZOULKARNEEV A, KIM S I, et al.  Nearly single- crystalline GaN light-emitting diodes on amorphous glass substrates. Nature Photonics, 2011, 5(12):763. DOI | 
| [30] | KRIEG L, MEIERHOFER F, GORNY S, et al.  Toward three-dimensional hybrid inorganic/organic optoelectronics based on GaN/oCVD-PEDOT structures. Nature Communications, 2020, 11(1):5092. DOI PMID | 
| [31] | LIU D, CAI Z, WU Y N, et al.  First-principles identification of VI+Cui defect cluster in cuprous iodide: origin of red light photoluminescence. Nanotechnology, 2022, 33(19):195203. DOI | 
| [1] | CHEN Zi, ZHANG Aidi, GONG Ke, LIU Haihua, YU Gang, SHAN Qingsong, LIU Yong, ZENG Haibo. High-brightness and Monodisperse Quaternary CuInZnS@ZnS Quantum Dots with Tunable and Long-lived Emission [J]. Journal of Inorganic Materials, 2025, 40(4): 433-339. | 
| [2] | ZHOU Bei-Ying, CHEN Dong, LIU Jia-Le, JIANG Wan, LUO Wei, WANG Lian-Jun. Preparation and Property of CuInS2/ZnS Core-shell Quantum Dots in Aqueous Phase [J]. Journal of Inorganic Materials, 2018, 33(3): 279-283. | 
| [3] | LI Feng-Rui, GU Mu, HE Hui, CHANG Li-Hua, WEN Wei-Feng, LI Ze-Ren, CHEN Liang, LIU Jin-Liang, OUYANG Xiao-Ping, LIU Xiao-Lin, LIU Bo, HUANG Shi-Ming,NI Chen. Fluorescent Decay Time and Energy Response of γ-CuI Crystal [J]. Journal of Inorganic Materials, 2017, 32(2): 163-168. | 
| [4] | CHANG Xi-Wang, CHEN Ning, WANG Li-Jun, LI Fu-Shen, BIAN Liu-Zhen, CHOU Kuo-Chih. Optimal Principle on Composition of B Site Elements in Perovskite Electrodes with Sr at A Site for Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2017, 32(10): 1055-1062. | 
| [5] | HUANG Rong-Tie, ZHENG Ming, SUI Li-Fang, CAI Chuan-Bing, HUANG Fu-Qiang. Synthesis and Physical Properties of Solar Material Cu1-xLixInSe2 [J]. Journal of Inorganic Materials, 2017, 32(1): 101-106. | 
| [6] | LIU Chang, YUAN Shuai, ZHANG Hai-Liang, CAO Bing-Qiang, WU Li-Li, YIN Long-Wei. p-type CuI Films Grown by Iodination of Copper and Their Application As Hole Transporting Layers for Inverted Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(4): 358-364. | 
| [7] | TIAN Li, ZHANG Xiao-Yong, MAO Qi-Nan, LI Xue-Geng, YU Ping-Rong, WANG Dong. Effect of Vacuum Rapid Annealing Treatment on Performance of CIGS Solar Cells [J]. Journal of Inorganic Materials, 2015, 30(1): 35-40. | 
| [8] | XIE Yi-Jun, GUO Yi-Ping, DONG Wen, GUO Bing, LI Hua, LIU He-Zhou. Preparation of La-doped BiFeO3 Thin Film and Its Photovoltaic Properties [J]. Journal of Inorganic Materials, 2013, 28(4): 436-440. | 
| [9] | YING Yan-Jun, CHENG Li-Fang, ZENG Xiao-Qin, ZOU Jian-Xin, DING Wen-Jiang. Theoretical and Experimental Investigations of the Effect of Co Addition on the Structural and Properties of AB3.5-type Hydrogen Storage Alloys [J]. Journal of Inorganic Materials, 2012, 27(6): 568-574. | 
| [10] | FAN Jun-Qi, ZHOU Zheng-Ji, ZHOU Wen-Hui, WU Si-Xin. Fabrication of CuInS2 Sensitized TiO2 Nanorod Arrays for Photovoltaic Devices [J]. Journal of Inorganic Materials, 2012, 27(1): 49-53. | 
| [11] | YAN Chang, LIU Fang-Yang, LAI Yan-Qing, LI Yi, LI Jie, LIU Ye-Xiang. Structure and Electrical Property of CuInS2 Thin Films Deposited by DC Reactive Magnetron Sputtering [J]. Journal of Inorganic Materials, 2011, 26(12): 1287-1292. | 
| [12] | WANG Zhuo,LI Yong-Xiang,YANG Qun-Bao. Progress of Novel Inkjet Technique for Inorganic Materials Preparation [J]. Journal of Inorganic Materials, 2009, 24(6): 1090-1096. | 
| [13] | WANG Lin-Jim,FANG Zhi-Jun,ZHANG Ming-Long,SHEN Hu-Jiang,XIA Yi-Ben. Dielectric and Thermal Properties of Diamond Film/Alumina Composite [J]. Journal of Inorganic Materials, 2004, 19(4): 902-906. | 
| [14] | WANG YOng-Ling,YU Da-Wei,DONG Xian-Lin. An Idea for Development of Intelligent Materials and Devices [J]. Journal of Inorganic Materials, 1999, 14(2): 211-217. | 
| [15] | CHEN Hongbing,ZHU Congshan,GAN Fuxi. Preparation and Electroinduced Second Order Nonlinear Optical Properties of CuI Microcrystal Doped Borosilicate Glasses [J]. Journal of Inorganic Materials, 1997, 12(4): 487-493. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||