[1] Jang J S, Ji S M, Bae S W, et al. Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light (-≥420 nm). Journal of Photochemistry and Photobiology A: Chemistry, 2007, 188(1): 112-119.
[2] Curri M L, Agostiano A, Manna L, et al. Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion: the role of the cosurfactant. J. Phys. Chem. B, 2000, 104(1): 8391-8397.
[3] Huang Y P, Cai R X, Huang H P. Studies on the fluorescence enhancement of Reverse Micelle on 2, 3-Diaminophenazine. Chemical Research in Chinese University, 1999, 20(7): 1031-1036.
[4] Zhang J Z. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B, 2000, 104(1): 7239-7253.
[5] Zhao X Y, Ao Q, Chen F S, et al. Effect of reverse micelle on conformation of soy globulins: a Raman study. Food Chemistry, 2009, 116(1): 176-182.
[6] Ryoko M U, Takashi H, Takafumi K, et al. Photochemically triggered transfer of bovine serum albumin by reverse micelle containing a Malachite Green leuconitrile derivative. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 337(1): 180-184.
[7] Mehran G, Hamidreza A, Alireza A. Size-controlled synthesis of ZrO2-TiO2 nanoparticles prepared via reverse micelle method investigation of particle size effect on the catalytic performance in vapor phase Beckmann rearrangement. Materials Research Bulletin, 2008, 43(5): 1255-1262.
[8] Pandey A, Pandey A. Reverse micelles as suitable microreactor for increased biohydrogen production. International Journal of Hydrogen Energy, 2008, 33 (1): 273-278.
[9] Zingaretti L, Mariano Correa N, Boscatto L. Distribution of amines in water/AOT/n-hexane reverse micelles: influence of the amine chemical structure. Journal of Colloid and Interface Science. 2005, 286(1): 245-252.
[10] Hirai T, Nanba M, Komasawa I. Dithiol-mediated immobilization of CdS nanoparticles from reverse micellar system onto Zn-doped silica particles and their high photocatalytic activity. Journal of Colloid and Interface Science, 2002, 252(1): 89-92.
[11] Li H D, Xu Z L, Zhai H J, et al. Preparation of CdS nanoparticles by reverse micelle method. Journal of Functional Materials, 2008, 6(39): 1040-1042.
[12] Bader H, Sturzenegger V, Hoigne J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-p-phenylenediam- ine (DPD). Water Res., 1988, 22(9): 1109-1115.
[13] Sathisha M, Viswanath R P. Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: Effect of particle size, noble metal and support. Catalysis Today, 2007, 129(15): 421-427.
[14] Kanade K G, Baeg J O K, Mulik U P, et al. Nano-CdS by polymer- inorganic solid-state reaction: Visible light pristine photocatalyst for hydrogen generation. Materials Research Bulletin, 2006, 41(12): 2219-2225.
[15] Shen S H, Guo L J. Growth of quantum-confined CdS nanoparticles inside Ti-MCM-41 as a visible light photocatalyst. Materials Research Bulletin, 2008, 43(2): 437-446.
[16] Girginer B, Galli G, Bicaka N. Preparation of stable CdS nanoparticles in aqueous medium and their hydrogen generation efficiencies in photolysis of water. International Journal of Hydrogen Energy, 2009, 34 (3): 1176-1184.
[17] Zou X Z, Zhang H L, Wang F, et al. Immobilization of hemoglobin on magnetic microspheres for preparation of hydrogen peroxide biosensor. Journal of Analytical Science, 2007, 6(23): 660-664.
[18] Qin Y H, Guan X H, Zhang S Y, et al. Electrochemical properties of myoglobin–nano-alumina templates-colloid gold assembly system. Chinese Journal of Analytical Chemistry, 2006, 34(01): 80-82.
[19] Zhang Y W, Zhang Y, Wang H, Bani Yan, et al. An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles. Journal of Electroanalytical Chemistry, 2009, 627(1): 9-14.
[20] Jiang X, Zhang L, Dong S J. Assemble of poly(aniline-co-o-amino benzenesulfonic acid) three-dimensional tubal net-works onto ITO electrode and its application for the direct electrochemistry and electro-catalytic behavior of cytochrome c. Electrochemistry Communcations, 2006, 8(7): 1137-1141.
[21] Smirnov W, Kriele A, Yang N, et al. Aligned diamond nanowires: Fabrication and characterisation for advanced applications in bio- and electrochemistry. Diamond &Related Materials, 2009, 19(2): 186-189.
[22] Xu J M, Li W, Yin Q F, et al. Direct electrochemistry of Cytochrome c on natural nano-attapulgite clay modified electrode and its electrocatalytic reduction for H2O2. Electrochimica Acta, 2007, 52(11): 3601-3606.
[23] Elena A. E, Natalia L. Z, Yuri F Z. Effect of surface potential of reverse micelle on enzyme–substrate complex formation. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 317(1): 297-302.
[24] Hieda J, Saito N, Takai O. Size-regulated gold nanoparticles fabricated by a discharge in reverse micelle solutions. Surface & Coatings Technology, 2008, 202(22): 5343-5346.
[25] Su Y R, William B, Lee T K, et al. Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J. Phys. Chem. C, 2007, 111(1): 18195-18203.
[26] Jiang D, Xu Y, Wu D, et al. Visible-light responsive dye-modified TiO2 photocatalyst. Journal of Solid State Chemistry, 2008, 181(3): 593-602.
[27] Uchihara T, Fukuda N, Miyagi E. Subpicosecond spectroscopic studies on the photochemical events of 2-dimethylaminoethanethiol-capped CdS nanoparticles in water. Journal of Photochemistry and Photobiology A: Chemistry, 2005,169(3): 309-315.
[28] Zhu H Y, Jian R, Xiao L, et al. Studies on decoloration of methyl orange by active carbon supported chitosan/nano-CdS composite particle. Journal of Hazardous Materials, 2009, 169(933): 1179-1184. |