Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (5): 509-516.DOI: 10.15541/jim20230502
• RESEARCH ARTICLE • Previous Articles Next Articles
CHENG Bo(), AN Xiaohang, LI Dinghua(
), YANG Rongjie
Received:
2023-10-30
Revised:
2023-12-28
Published:
2024-05-20
Online:
2024-01-08
Contact:
LI Dinghua, associate professor. E-mail: dli@bit.edu.cnAbout author:
CHENG Bo (1997-), male, PhD candidate. E-mail: cb_biter@163.com
Supported by:
CLC Number:
CHENG Bo, AN Xiaohang, LI Dinghua, YANG Rongjie. Flame-retardant Properties and Transformation of Flame-retardant Mechanisms of EVA: Effect of ATH/ADP Ratio[J]. Journal of Inorganic Materials, 2024, 39(5): 509-516.
Sample | EVA/% (in mass) | ATH/% (in mass) | ADP/% (in mass) | LOI/% | UL-94 |
---|---|---|---|---|---|
EVA1 | 40 | 60 | 0 | 34.5 | NR |
EVA2 | 40 | 55 | 5 | 34.7 | NR |
EVA3 | 40 | 50 | 10 | 36.8 | NR |
EVA4 | 40 | 45 | 15 | 37.4 | V-1 |
EVA5 | 40 | 40 | 20 | 37.8 | V-0 |
EVA6 | 40 | 30 | 30 | 39.2 | NR |
EVA7 | 40 | 20 | 40 | 42.8 | V-0 |
EVA8 | 40 | 15 | 45 | 41.6 | NR |
EVA9 | 40 | 10 | 50 | 39.8 | NR |
EVA10 | 40 | 0 | 60 | 34.0 | NR |
Table 1 Formulations of EVA composites and test results of UL-94 and LOI
Sample | EVA/% (in mass) | ATH/% (in mass) | ADP/% (in mass) | LOI/% | UL-94 |
---|---|---|---|---|---|
EVA1 | 40 | 60 | 0 | 34.5 | NR |
EVA2 | 40 | 55 | 5 | 34.7 | NR |
EVA3 | 40 | 50 | 10 | 36.8 | NR |
EVA4 | 40 | 45 | 15 | 37.4 | V-1 |
EVA5 | 40 | 40 | 20 | 37.8 | V-0 |
EVA6 | 40 | 30 | 30 | 39.2 | NR |
EVA7 | 40 | 20 | 40 | 42.8 | V-0 |
EVA8 | 40 | 15 | 45 | 41.6 | NR |
EVA9 | 40 | 10 | 50 | 39.8 | NR |
EVA10 | 40 | 0 | 60 | 34.0 | NR |
Sample | TTI/s | PHRR/ (kW·m-2) | THR/ (MJ·m-2) | TSR/ (m2·m-2) | Residue mass/% |
---|---|---|---|---|---|
EVA1 | 75 | 167.95 | 72.37 | 417.74 | 43.71 |
EVA5 | 80 | 253.00 | 89.65 | 928.12 | 40.22 |
EVA7 | 67 | 399.91 | 97.30 | 1895.28 | 26.92 |
EVA10 | 45 | 498.11 | 106.14 | 2586.84 | 16.71 |
Table 2 Results of CONE test for EVA composites
Sample | TTI/s | PHRR/ (kW·m-2) | THR/ (MJ·m-2) | TSR/ (m2·m-2) | Residue mass/% |
---|---|---|---|---|---|
EVA1 | 75 | 167.95 | 72.37 | 417.74 | 43.71 |
EVA5 | 80 | 253.00 | 89.65 | 928.12 | 40.22 |
EVA7 | 67 | 399.91 | 97.30 | 1895.28 | 26.92 |
EVA10 | 45 | 498.11 | 106.14 | 2586.84 | 16.71 |
Sample | T5%/℃ | Tmax1/℃ | Tmax2/℃ | Residue mass at 800 ℃/% | Theoretical mass of residue/% |
---|---|---|---|---|---|
ATH | 250.7 | 279.7 | — | 66.2 | — |
ADP | 409.8 | 466.8 | — | 18.8 | — |
EVA | 342.5 | 355.1 | 472.3 | 0.0 | — |
EVA1 | 296.2 | 324.9 | 470.8 | 39.2 | 39.7 |
EVA5 | 306.4 | 318.6 | 471.2 | 31.8 | 30.2 |
EVA7 | 322.5 | 326.5 | 467.5 | 16.6 | 20.7 |
EVA10 | 362.8 | 361.5 | 467.3 | 3.4 | 11.3 |
Table 3 TG data for ATH, ADP, EVA,and EVA composites
Sample | T5%/℃ | Tmax1/℃ | Tmax2/℃ | Residue mass at 800 ℃/% | Theoretical mass of residue/% |
---|---|---|---|---|---|
ATH | 250.7 | 279.7 | — | 66.2 | — |
ADP | 409.8 | 466.8 | — | 18.8 | — |
EVA | 342.5 | 355.1 | 472.3 | 0.0 | — |
EVA1 | 296.2 | 324.9 | 470.8 | 39.2 | 39.7 |
EVA5 | 306.4 | 318.6 | 471.2 | 31.8 | 30.2 |
EVA7 | 322.5 | 326.5 | 467.5 | 16.6 | 20.7 |
EVA10 | 362.8 | 361.5 | 467.3 | 3.4 | 11.3 |
[1] | WANG B B, WANG X F, TANG G, et al. Preparation of silane precursor microencapsulated intumescent flame retardant and its enhancement on the properties of ethylene-vinyl acetate copolymer cable. Composites Science and Technology, 2012, 72(9): 1042. |
[2] | WANG B B, TANG Q B, HONG N N, et al. Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene-vinyl acetate copolymer/ microencapsulated ammonium polyphosphate/polyamide-6 blends. ACS Applied Materials & Interfaces, 2011, 3(9): 3754. |
[3] | HUANG C, ZHAO Z Y, DENG C, et al. Facile synthesis of phytic acid and aluminum hydroxide chelate-mediated hybrid complex toward fire safety of ethylene-vinyl acetate copolymer. Polymer Degradation and Stability, 2021, 190: 109659. |
[4] | WANG B B, QIAN X D, SHI Y Q, et al. Cyclodextrin microencapsulated ammonium polyphosphate: preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer. Composites Part B: Engineering, 2015, 69: 22. |
[5] | 吴凡, 秦建雨, 程博, 等. 基于文献计量的中国电缆阻燃技术分析. 合成树脂及塑料, 2019, 36(4): 85. |
[6] | 宋恪淳, 程博, 沈清, 等. 乙烯-乙酸乙烯酯共聚物阻燃研究现状及趋势——基于文献计量分析(1990—2020年). 合成树脂及塑料, 2023, 40(1): 71. |
[7] | LIU B W, ZHAO H B, WANG Y Z. Advanced flame- retardant methods for polymeric materials. Advanced Materials, 2021, 34(46): 2107905. |
[8] | PAN Y Q, HAN L G, GUO Z H, et al. Improving the flame- retardant efficiency of aluminum hydroxide with fullerene for high-density polyethylene. Journal of Applied Polymer Science, 2017, 134(9): 44551. |
[9] | BEYER G N. Flame retardant properties of EVA-nanocomposites and improvements by combination of nanofillers with aluminium trihydrate. Fire and Materials, 2001, 25(5): 193. |
[10] | CARPENTIER F, BOURBIGOT S, LE BEAS M, et al. Charring of fire retarded ethylene vinyl acetate copolymer-magnesium hydroxide/zinc borate formulations. Polymer Degradation and Stability, 2000, 69(1): 83. |
[11] | BOURBIGOT S, BRAS M L, LEEUWENDAL R, et al. Recent advances in the use of zinc borates in flame retardancy of EVA. Polymer Degradation and Stability, 1999, 64(3): 419. |
[12] | 安德烈亚斯·罗斯, 格尔德·贝格曼, 曼努埃尔·拉罗萨, 等. 防火的聚合物组合物: CN102725337. 2012-10-10. |
[13] | DUQUESNE S, FONTAINE G, CERIN-DELAVAL O, et al. Study of the thermal degradation of an aluminium phosphinate-aluminium trihydrate combination. Thermochimica Acta, 2013, 551: 175. |
[14] | YUAN B H, SUN Y R, CHEN X F, et al. Poorly-/well-dispersed graphene: abnormal influence on flammability and fire behavior of intumescent flame retardant. Composites Part A: Applied Science and Manufacturing, 2018, 109: 345. |
[15] | SUN Y R, YU B, LIU Y, et al. Design of 2D charring-foaming agent for highly efficient intumescent flame retardant polylactic acid composites. Composites Communications, 2023, 43: 101720. |
[16] | SUN Y R, YUAN B H, SHANG S, et al. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Composites Part B: Engineering, 2020, 181: 107588. |
[17] | SUN Y R, YU B, LIU Y, et al. Bio-inspired surface manipulation of halloysite nanotubes for high-performance flame retardant polylactic acid nanocomposites. Nano Research, 2024, 17(3): 1595. |
[18] | FU M Z, QU B J. Synergistic flame-retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends. Polymer Degradation and Stability, 2004, 85(1): 633. |
[19] | ZHANG J Y. Preparation and flame retardancy of a novel flame- retardant poly(ethylene-co-vinyl acetate)/aluminum hydroxide composites containing phosphorus. Polymer Composites, 2011, 32(12): 1970. |
[20] | ZHAO F, GUO Z L, CHEN W, et al. Synergistic effects of pentaerythritol with aluminum hypophosphite in flame retardant ethylene-vinyl acetate composites. Polymer Composites, 2018, 39(7): 2299. |
[21] | SUN H W, CHEN K X, LIU Y, et al. Improving flame retardant and smoke suppression function of ethylene vinyl acetate by combining the piperazine pyrophosphate, expandable graphite and melamine phosphate. European Polymer Journal, 2023, 194: 112148. |
[22] | BATTEGAZZORE D, LAVASELLI M, CHENG B, et al. Reactive extrusion of sol-gel silica as fire retardant synergistic additive in ethylene-vinyl acetate copolymer (EVA) composites. Polymer Degradation and Stability, 2019, 167: 259. |
[23] | HU F, CHENG B, CONG K, et al. Enhancing char formation and flame retardancy of ethylene-vinyl acetate copolymer (EVA)/ aluminum hydroxide (ATH) composites by grafting ladder phenyl/ vinyl polysilsesquioxane (PhVPOSS). Polymers, 2023, 15(15): 3312. |
[24] | DING W P, LI J, TAO K. Char strengthened by carbon microspheres formed in situ during combustion of IFR/EVA composites catalyzed by solid super acid. RSC advances, 2014, 4(64): 34161. |
[25] | YE X M, MENG X N, HAN Z Q, et al. Designing Fe-containing polyhedral oligomeric silsesquioxane to endow superior mechanical and flame-retardant performances of polyamide 1010. Composites Science and Technology, 2023, 233: 109894. |
[26] | YE X M, FENG Y, TIAN P P, et al. Engineering two nitrogen- containing polyhedral oligomeric silsesquioxanes (N-POSSs) to enhance the fire safety of epoxy resin endowed with superior thermal stability. Polymer Degradation and Stability, 2022, 200: 109946. |
[27] | YE X M, ZHANG X L, JIANG Y Y, et al. Controllable dimensions and regular geometric architectures from self-assembly of lithium-containing polyhedral oligomeric silsesquioxane: build for enhancing the fire safety of epoxy resin. Composites Part B: Engineering, 2022, 229: 109483. |
[28] | LI Y M, DENG C, SHI X H, et al. Simultaneously improved flame retardance and ceramifiable properties of polymer-based composites via the formed crystalline phase at high temperature. ACS Applied Materials & Interfaces, 2019, 11(7): 7459. |
[29] | LI Y M, DENG C, WANG Y Z. A novel high-temperature-resistant polymeric material for cables and insulated wires via the ceramization of mica-based ceramifiable EVA composites. Composites Science and Technology, 2016, 132: 116. |
[30] | 李波, 邵玲玲. 氧化铝、氢氧化铝的XRD鉴定. 无机盐工业, 2008, 40(2): 54. |
[31] | 王子, 闫文付, 徐如人. 二丙胺的结构微调对磷酸铝分子筛晶化过程影响的凝胶组成依赖性. 无机化学学报, 2017, 33(9): 1595. |
[32] | ZHU X K, ZOU N, PANG H C, et al. Fabrication of hierarchical core-shell AlPO4@Al(OH)3 with high flame-retardant performance. Chemical Physics Letters, 2020, 759: 137943. |
[1] | LI Xia,SHENASHEN Mohamed A,MEKAWY Moataz,TANIGUCHI Akiyoshi,EI-SAFTY Sherif A. Aluminum Hydroxide Nanosheets with Structure-dependent Storage and Transportation toward Cancer Chemotherapy [J]. Journal of Inorganic Materials, 2020, 35(2): 250-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||