Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (10): 1176-1182.DOI: 10.15541/jim20230096
Special Issue: 【能源环境】光催化(202312); 【能源环境】污染物去除(202312)
• RESEARCH ARTICLE • Previous Articles Next Articles
MA Rundong1,2(), GUO Xiong1,2, SHI Kaixuan1,2, AN Shengli1,2, WANG Ruifen1,2(
), GUO Ruihua1,2
Received:
2023-02-25
Revised:
2023-03-13
Published:
2023-10-20
Online:
2023-04-11
Contact:
WANG Ruifen, associate professor. E-mail: wrf2008@imust.edu.cnAbout author:
MA Rundong (1999-), male, Master. E-mail: 896164876@qq.com
Supported by:
CLC Number:
MA Rundong, GUO Xiong, SHI Kaixuan, AN Shengli, WANG Ruifen, GUO Ruihua. S-type Heterojunction of MOS2/g-C3N4: Construction and Photocatalysis[J]. Journal of Inorganic Materials, 2023, 38(10): 1176-1182.
Fig. 2 FE-SEM images of g-C3N4 (a), MoS2 (b) and FE-SEM images (c, d), HR-TEM images (e, f),element mapping (g) and C (h), N (i), S (j), Mo (k) mapping of 5%MGCD
Fig. 3 UV-Vis (a) spectra, Tauc curves (b), PL spectra (c), instantaneous meter photocurrents (d), and EIS (e) patterns of samples Colorful figures are available on website
Fig. 4 Degradation rate of different photocatalyst samples (a), cyclic degradation rate of 5%MGCD with time (b), XRD patterns of 5%MGCD before and after circulation experiment (c), and histogram of free radical trapping experiment (d)
Fig. 5 Energy bands diagram of heterojunction (a), construction of heterojunction of sample and bending of Fermi energy level (b), and diagram of energy band bending caused by built-in electric field (c)
[1] |
HUANG R, HUANG W, LI D F, et al. Self-assembled hierarchical carbon/g-C3N4 composite with high photocatalytic activity. Journal of Physics D: Applied Physics, 2018, 51(13): 135501.
DOI URL |
[2] |
ZHEN W, XIAO N, SHEN, JI Y F, et al. Synthesis of novel MoS2/g-C3N4nanocomposites for enhanced photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2020, 31(18): 15885.
DOI |
[3] |
JIANG Y B, SUN Z Z, CHEN Q W, et al. Sulfate modified g-C3N4 with enhanced photocatalytic activity towards hydrogen evolution: the role of sulfate in photocatalysis. Physical Chemistry Chemical Physics, 2020, 22(18): 10116.
DOI URL |
[4] | LI K Y, LIANG Y D, YANG H, et al. New insight into the mechanism of enhanced photo-Fenton reaction efficiency for Fe-doped semiconductors: a case study of Fe/g-C3N4. Catalysis Today, 2020, 371: 58. |
[5] |
WANG X, XIONG W, LI X Y, ZHAO Q D, et al. Fabrication of MoS2@g-C3N4 core-shell nanospheresfor visible light photocatalytic degradation of toluene. Journal of Nanoparticle Research, 2018, 20(9): 243.
DOI |
[6] |
YUN H J, LEE H, KIM N D, et al. A combination of two visible-light responsive photocatalysts for achieving the Z-Scheme in the solid state. ACS Nano, 2011, 5(5): 4084.
DOI PMID |
[7] |
AKIHIDE I, YUN H, YOSHIMI I, et al. Reduced graphene oxide as a solid-state electron mediator in z-scheme photocatalytic water splitting under visible light. Journal of the American Chemical Society, 2011, 133(29): 11054.
DOI PMID |
[8] | CHU K, LIU Y P, LI Y B, GUO Y L, et al. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Applied Materials & Interfaces, 2020, 12(6): 7081. |
[9] |
CHOUDARI B V R, ZHANG S P, WEN, Z Y, et al. Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano, 2015, 9(12): 12464.
DOI PMID |
[10] |
DONG H C, LI J Z, CHEN M G, et al. High-throughput production of ZnO-MoS2 graphene heterostructures for highly efficient photocatalytic hydrogen evolution. Materials, 2019, 12(14): 22.
DOI URL |
[11] | SARANYA J, SUPANAN A, ORAPHAN T, et al. Photocatalytic activity enhancement of g-C3N4/BiOBr in selective transformation of primary amines to imines and its reaction mechanism Chemical Engineering Journal, 2020, 394: 124934. |
[12] |
VITALY E S, DMITRY A P, Ekaterina YR, et al. Anilinonaphthalene sulfonate binds to central cavity of humanhemo globin. Biochemical and Biophysical Research Communications, 2004, 317(3): 761.
DOI URL |
[13] | YANG X L, QIAN F F, ZOU G J, et al. Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Applied Catalysis B Environmental, 2016, 193: 22. |
[14] | LIU J, ZHANG T, WANG Z, et al. Enhancement of visible light photocatalytic activities via porous structure of g-C3N4. Applied Catalysis B: Environmental, 2014, 405(3): 229. |
[15] |
HUANG W Z, XU Z D, LIU R, et al. Tungstenic acid induced assembly of hierarchical flower-like MoS2 spheres. Materials Research Bulletin 2008, 43(10): 2799.
DOI URL |
[16] | LIU Y J, LIU H X, et al. A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation. Applied Surface Science, 2019, 466:133. |
[17] |
YUAN Y J, YE Z J, LU H W, et al. Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catalysis, 2016, 6(2): 532.
DOI URL |
[18] | SUN L L, LI Y F, JIAO X D, et al. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chemical Society Reviews, 2020, 49(18): 6592. |
[19] |
HOU Y D, LAURSEN A B, ZHANG J S, et al. Layered nanojunctions for hydrogen-evolution catalysis. Angewandte Chemie International Edition, 2013, 52(13): 3621.
DOI URL |
[20] | YANG J, SHI Q, ZHANG R, et al. BiVO4 quantum tubes loaded on reduced graphene oxide aerogel as efficient photocatalyst for gaseous formaldehyde degradation. Carbon, 2018, 138: 118. |
[21] | TIAN S C, ZHANG X H, ZHANG Z H, et al. Capacitive deionization with MoS2/g-C3N4 electrodes. Desalination, 2020, 479: 114. |
[22] | LIU S S, ZHANG X B, HAO S, et al. Preparation of MoS2 nanofibers by electrospinning. Materials Letters, 2012,73: 223. |
[23] | LI X L, LI Y D, et al. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chemistry-a European Journal, 2003(9): 22. |
[24] | ZHOU X S, LUO Z H, TAO P F, et al. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 nanospheres modified porous g-C3N4. Materials Chemistry and Physics, 2014, 143: 1462. |
[25] | YU J G, WANG S H, CHENG B, et al. Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible- light photocatalytic H2-production activity. Catalysis Science & Technology, 2013, (3): 1782. |
[26] | GUO B R, LIU B, LI C, et al. S-scheme Ti0.7Sn0.3O2/g-C3N4 heterojunction composite for enhanced photocatalytic pollutants degradation. Journal of Environmental Chemical Engineering, 2022, 10(2): 107. |
[27] | 崔晓莉. 半导体电极的平带电位. 化学通报, 2017(80): 1160. |
[28] | HUANG Z F, SONG J, WANG X, et al. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy, 2017, 40: 308. |
[29] | YU W, CHEN J, SHANG T, et al. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Applied Catalysis B: Environmental, 2017, 219: 693. |
[30] |
YANG B, ZHAO J J, YANG W D, et al. A step-by-step synergistic stripping approach toward ultra-thin porous g-C3N4 nanosheets with high conduction band position for photocatalystic CO2 reduction. Journal of Colloid and Interface Science, 2021, 589(12): 179.
DOI URL |
[31] | DONG F, ZHAO Z W, XIONG T, et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. Applied Materials & Interfaces, 2013, 5(21): 11392. |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode [J]. Journal of Inorganic Materials, 2024, 39(4): 374-382. |
[5] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[6] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[7] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[8] | LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150. |
[9] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[10] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[11] | HU Zhongliang, FU Yuntian, JIANG Meng, WANG Lianjun, JIANG Wan. Thermal Stability of Nb/Mg3SbBi Interface [J]. Journal of Inorganic Materials, 2023, 38(8): 931-937. |
[12] | LIU Jian, WANG Lingkun, XU Baoliang, ZHAO Qian, WANG Yaoxuan, DING Yi, ZHANG Shengtai, DUAN Tao. Nd-doped ZrSiO4 Ceramics: Synthesis in Molten Salt at Low Temperature, Phase Evolution and Chemical Stability [J]. Journal of Inorganic Materials, 2023, 38(8): 910-916. |
[13] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[14] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[15] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||