Journal of Inorganic Materials ›› 2026, Vol. 41 ›› Issue (2): 186-192.DOI: 10.15541/jim20250108
• RESEARCH ARTICLE • Previous Articles Next Articles
JIANG Jun1(
), YANG Gonglü1, YANG Yufan1, LI Yi1, YUAN Ningyi1(
), DING Jianning2(
)
Received:2025-03-12
Revised:2025-07-07
Published:2025-08-01
Online:2025-08-01
Contact:
YUAN Ningyi, professor. E-mail: nyyuan@cczu.edu.cn;About author:JIANG Jun (1991-), female, PhD. E-mail: jiangjun@cczu.edu.cn
Supported by:CLC Number:
JIANG Jun, YANG Gonglü, YANG Yufan, LI Yi, YUAN Ningyi, DING Jianning. Regulating Perovskite Film Crystallization via Organic Amine Salts for Enhanced Photoelectric Conversion Efficiency and Stability[J]. Journal of Inorganic Materials, 2026, 41(2): 186-192.
Fig. 2 (a) XRD patterns of xBAI-Pf (x=0, 0.068, 0.136, 0.204); (b, c) Semi-in situ 3D XRD patterns of (b) 0BAI-Pf and (c) 0.136BAI-Pf on different heating stages
Fig. 3 (a, b) XPS spectra, (c) Tauc plots corresponding to UV-Vis absorption spectra, (d, e) UPS spectra, and (f) schematic energy levels of 0BAI-Pf and 0.136BAI-Pf Colorful figures are available on website
Fig. 4 (a) PL spectra, (b) TRPL spectra of 0BAI-Pf and 0.136BAI-Pf; (c) SCLC spectra of devices containing two types of thin films Inset in (c): structural diagram of SCLC device. Colorful figures are available on website
Fig. 5 (a) Cross section SEM image of 0.136BAI-PSCs; (b) J-V curves of xBAI-PSC; (c) Forward (F) and reverse (R) scanning J-V curves and (d) EQE spectra of 0BAI-PSCs and 0.136BAI-PSCs; (e) Forward and reverse scanning J-V curves and (f) attenuation curves of PCE with bending cycles at a bending radius of 5 mm for 0BAI-F-PSCs and 0.136BAI-F-PSCs Inset in (e): photograph of flexible PSCs; Inset in (f): bending experiment. Colorful figures are available on website
| Film | Ecutoff/eV | EFermi/eV | EVB/eV | ECB/eV | EF/eV | Eg/eV |
|---|---|---|---|---|---|---|
| 0BAI-Pf | 17.16 | 1.27 | -5.33 | -3.78 | -4.06 | 1.55 |
| 0.136BAI-Pf | 17.27 | 1.30 | -5.25 | -3.70 | -3.95 | 1.55 |
Table S1 Energy level structure parameters of 0BAI-Pf and 0.136BAI-Pf
| Film | Ecutoff/eV | EFermi/eV | EVB/eV | ECB/eV | EF/eV | Eg/eV |
|---|---|---|---|---|---|---|
| 0BAI-Pf | 17.16 | 1.27 | -5.33 | -3.78 | -4.06 | 1.55 |
| 0.136BAI-Pf | 17.27 | 1.30 | -5.25 | -3.70 | -3.95 | 1.55 |
| Film | τ1/ns | A1 | τ2/ns | A2 | τave/ns |
|---|---|---|---|---|---|
| 0BAI-Pf | 33.13 | 0.40 | 40.49 | 0.40 | 37.18 |
| 0.136BAI-Pf | 83.67 | 0.36 | 102.27 | 0.36 | 109.80 |
Table S2 TRPL lifetime fitting parameters of 0BAI-Pf and 0.136BAI-Pf
| Film | τ1/ns | A1 | τ2/ns | A2 | τave/ns |
|---|---|---|---|---|---|
| 0BAI-Pf | 33.13 | 0.40 | 40.49 | 0.40 | 37.18 |
| 0.136BAI-Pf | 83.67 | 0.36 | 102.27 | 0.36 | 109.80 |
| PSCs | VOC/V | FF/% | JSC/(mA·cm-2) | PCE/% |
|---|---|---|---|---|
| 0BAI-PSCs | 1.11 | 81.21 | 24.75 | 22.32 |
| 0.068BAI-PSCs | 1.11 | 82.67 | 24.92 | 22.85 |
| 0.136BAI-PSCs | 1.11 | 83.43 | 25.29 | 23.46 |
| 0.204BAI-PSCs | 1.09 | 82.07 | 24.96 | 22.41 |
Table S3 Photovoltaic performance parameters of xBAI-PSCs
| PSCs | VOC/V | FF/% | JSC/(mA·cm-2) | PCE/% |
|---|---|---|---|---|
| 0BAI-PSCs | 1.11 | 81.21 | 24.75 | 22.32 |
| 0.068BAI-PSCs | 1.11 | 82.67 | 24.92 | 22.85 |
| 0.136BAI-PSCs | 1.11 | 83.43 | 25.29 | 23.46 |
| 0.204BAI-PSCs | 1.09 | 82.07 | 24.96 | 22.41 |
| PSCs | VOC/V | FF/% | JSC/(mA·cm-2) | PCE/% |
|---|---|---|---|---|
| 0BAI-PSCs-R | 1.11 | 81.21 | 24.75 | 22.32 |
| 0BAI-PSCs-F | 1.11 | 80.91 | 23.70 | 21.29 |
| 0.136BAI-PSCs-R | 1.11 | 83.43 | 25.29 | 23.46 |
| 0.136BAI-PSCs-F | 1.11 | 82.97 | 25.09 | 23.07 |
Table S4 Parameters of forward and backward scanning J-V curves of 0BAI-PSCs and 0.136BAI-PSCs
| PSCs | VOC/V | FF/% | JSC/(mA·cm-2) | PCE/% |
|---|---|---|---|---|
| 0BAI-PSCs-R | 1.11 | 81.21 | 24.75 | 22.32 |
| 0BAI-PSCs-F | 1.11 | 80.91 | 23.70 | 21.29 |
| 0.136BAI-PSCs-R | 1.11 | 83.43 | 25.29 | 23.46 |
| 0.136BAI-PSCs-F | 1.11 | 82.97 | 25.09 | 23.07 |
| PSCs | VOC/V | FF/% | JSC/(mA·cm-2) | PCE/% |
|---|---|---|---|---|
| 0BAI-F-PSCs-R | 1.11 | 78.64 | 24.74 | 21.51 |
| 0BAI-F-PSCs-F | 1.11 | 76.75 | 24.71 | 21.04 |
| 0.136BAI-F-PSCs-R | 1.11 | 81.24 | 24.82 | 22.26 |
| 0.136BAI-F-PSCs-F | 1.11 | 80.87 | 24.66 | 22.17 |
Table S5 Parameters of J-V curves of 0BAI-F-PSCs and 0.136BAI-F-PSCs
| PSCs | VOC/V | FF/% | JSC/(mA·cm-2) | PCE/% |
|---|---|---|---|---|
| 0BAI-F-PSCs-R | 1.11 | 78.64 | 24.74 | 21.51 |
| 0BAI-F-PSCs-F | 1.11 | 76.75 | 24.71 | 21.04 |
| 0.136BAI-F-PSCs-R | 1.11 | 81.24 | 24.82 | 22.26 |
| 0.136BAI-F-PSCs-F | 1.11 | 80.87 | 24.66 | 22.17 |
| [1] | The National Renewable Energy Laboratory. Best research-cell efficiency chart. (2025-01-21)[2025-03-12]. https://www.nrel.gov/pv/cell-efficiency.html. |
| [2] | HAILEGNAW B, DEMCHYSHYN S, PUTZ C, et al. Flexible quasi-2D perovskite solar cells with high specific power and improved stability for energy autonomous drones. Nature Energy, 2024, 9: 677. |
| [3] |
WU J, LIU Z, YANG Y, et al. Regulating precursor viscosity with inert solvent additives for efficient blade-coated perovskite solar cells. Small Methods, 2025, 9(8): 2500129.
DOI URL |
| [4] |
ZHANG Z, CHEN W, JIANG X, et al. Suppression of phase segregation in wide bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency. Nature Energy, 2024, 9: 592.
DOI |
| [5] |
LIANG L, NAN Z, LI Y, et al. Formation dynamics of thermally stable 1D/3D perovskite interfaces for high-performance photovoltaics. Advanced Materials, 2025, 37(8): 2413841.
DOI URL |
| [6] |
WANG K, ZHENG L Y, HOU Y C, et al. Overcoming Shockley- Queisser limit using halide perovskite platform? Joule, 2022, 6(4): 756.
DOI URL |
| [7] |
ALLEN T G, BULLOCK J, YANG X, et al. Passivating contacts for crystalline silicon solar cells. Nature Energy, 2019, 4: 914.
DOI |
| [8] | XIE L, DU S, LI J, et al. Molecular dipole engineering-assisted strain release for mechanically robust flexible perovskite solar cells. Energy & Environment Science, 2023, 16(11): 5423. |
| [9] |
WANG S, TAN L, ZHOU J, et al. Over 24% efficient MA-free CsxFA1-xPbX3 perovskite solar cells. Joule, 2022, 6(6): 1344.
DOI URL |
| [10] |
ZHU H, WU S, YAO J, et al. An effective surface modification strategy with high reproducibility for simultaneously improving efficiency and stability of inverted MA-free perovskite solar cells. Journal of Materials Chemistry A, 2019, 7(37): 21476.
DOI URL |
| [11] |
LI X, GAO S, WU X, et al. Bifunctional ligand-induced preferred crystal orientation enables highly efficient perovskite solar cells. Joule, 2024, 8(11): 3169.
DOI URL |
| [12] |
ZHANG X, SHANG C, WANG C, et al. Preferred crystallographic orientation via solution bathing for high-performance inverted perovskite photovoltaics. Advanced Functional Materials, 2024, 34(46): 2407732.
DOI URL |
| [13] |
HUANG S, QIAN C, LIU X, et al. A review on flexible solar cells. Science China Materials, 2024, 67(9): 2717.
DOI |
| [14] |
FAN Y, CHEN H, LIU X, et al. Myth behind metastable and stable n-hexylammonium bromide-based low-dimensional perovskites. Journal of the American Chemical Society, 2023, 145 (14): 8209.
DOI URL |
| [15] | LEI Y S, CHEN Y, ZHANG R, et al. A fabrication process for flexible single-crystal perovskite devices. Nature, 2020, 583: 790. |
| [16] |
XU X, DU Q, KANG H, et al. Uniform molecular adsorption energy-driven homogeneous crystallization and dual-interface modification for high efficiency and thermal stability in inverted perovskite solar cells. Advanced Functional Materials, 2024, 34(44): 2408512.
DOI URL |
| [17] |
LIU H, JIN G, WANG J, et al. Quantum dots mediated crystallization enhancement in two-step processed perovskite solar cells. Nano-Micro Letters, 2025, 17: 169.
DOI PMID |
| [18] |
LI S, XIAO Y, SU R, et al. Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature, 2024, 635: 874.
DOI |
| [19] |
PENG J, WALTER D, REN Y, et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science, 2021, 371(6527): 390.
DOI PMID |
| [20] |
KANG D, PARK N. On the current-voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 2019, 31(34): 1805214.
DOI URL |
| [21] |
ZHAO W, XU J, HE K, et al. A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Letters, 2021, 13: 169.
DOI PMID |
| [22] | WANG C, GU J, LI J, et al. Two-dimensional (n=1) ferroelectric film solar cells. National Science Review, 2023, 10(7): nwad061. |
| [23] |
LIAO X, JIA X, LI W, et al. Methylammonium-free, high-efficiency, and stable all-perovskite tandem solar cells enabled by multifunctional rubidium acetate. Nature Communications, 2025, 16: 1164.
DOI |
| [1] | MA Xinchao, ZHI Qing, LI Wei, CHEN Mao, WANG Hailong, ZHANG Rui, ZHANG Fan, FAN Bingbing. High-temperature Oxidation Mechanism and Electromagnetic Wave Absorption Properties of Fe2AlB2 [J]. Journal of Inorganic Materials, 2026, 41(1): 45-54. |
| [2] | YU Shengyang, SU Haijun, JIANG Hao, YU Minghui, YAO Jiatong, YANG Peixin. A Review of Pore Defects in Ultra-high Temperature Oxide Ceramics by Laser Additive Manufacturing: Formation and Suppression [J]. Journal of Inorganic Materials, 2025, 40(9): 944-956. |
| [3] | JIANG Zongyu, HUANG Honghua, QING Jiang, WANG Hongning, YAO Chao, CHEN Ruoyu. Aluminum Ion Doped MIL-101(Cr): Preparation and VOCs Adsorption Performance [J]. Journal of Inorganic Materials, 2025, 40(7): 747-753. |
| [4] | NI Xiaomeng, XU Fangxian, LIU Jingjing, ZHANG Shuai, GUO Huafei, YUAN Ningyi. Photovoltaic Performance of Sb2(S,Se)3 Film Enhanced by Addition of Formamidinesulfinic Acid [J]. Journal of Inorganic Materials, 2025, 40(4): 372-378. |
| [5] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
| [6] | PAN Zesheng, YOU Yaping, ZHENG Ya, CHEN Haijie, WANG Lianjun, JIANG Wan. Stability of Phosphors for White LED Excitable by Violet Light [J]. Journal of Inorganic Materials, 2025, 40(3): 314-322. |
| [7] | HU Qinghao, LIU Xingchong, PENG Yongshan, HOU Mengjun, HE Tanggui, TANG Anmin. Effect of Acesulfame Potassium Modified SnO2 Electron Transport Layer on Performance of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2025, 40(11): 1261-1267. |
| [8] | ZHANG Jinghui, LU Xiaotong, MAO Haiyan, TIAN Yazhou, ZHANG Shanlin. Effect of Sintering Additives on Sintering Behavior and Conductivity of BaZr0.1Ce0.7Y0.2O3-δ Electrolytes [J]. Journal of Inorganic Materials, 2025, 40(1): 84-90. |
| [9] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
| [10] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
| [11] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
| [12] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
| [13] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
| [14] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
| [15] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||