[1] JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592(7854): 381. [2] LIU Z H, QIU L B, ONO L K, et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nature Energy, 2020, 5(8): 596. [3] BU T L, LI J, LI H Y, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372(6548): 1327. [4] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal Halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [5] NREL. Best Research-Cell Efficiency Chart.[2025-05-05]https://www.nrel.gov/pv/cell-efficiency.html. [6] ZHANG H L, JI X, YAO H Y, et al. Review on efficiency improvement effort of perovskite solar cell. Solar Energy, 2022, 233: 421. [7] HAGHIGHI M, GHAZYANI N, MAHMOODPOUR S, et al. Low-temperature processing methods for tin oxide as electron transporting layer in scalable perovskite solar cells. Solar RRL, 2023, 7(10): 2201080. [8] TROST S, BEHRENDT A, BECKER T, et al. Tin oxide (SnOx) as universal "light-soaking" free electron extraction material for organic solar cells. Advanced Energy Materials, 2015, 5(17): 1500277. [9] ZHANG J J, FU J F, CHEN Q Y, et al. 3,5-Difluorophenylboronic acid-modified SnO2 as ETLs for perovskite solar cells: PCE>22.3%, T82>3000 h. Chemical Engineering Journal, 2022, 433: 133744. [10] ALTINKAYA C, AYDIN E, UGUR E, et al. Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells. Advanced Materials, 2021, 33(15): 2005504. [11] GODINHO K G, WALSH A, WATSON G W.Energetic and electronic structure analysis of intrinsic defects in SnO2.Journal of Physical Chemistry C, 2009, 113(1): 439. [12] PARIDA B, JIN I S, JUNG J W.Dual passivation of SnO2 by tetramethylammonium chloride for high-performance CsPbI2Br-based inorganic perovskite solar cells.Chemistry of Materials, 2021, 33(15): 5850. [13] DONG H Y, WANG J L, LI X Y, et al. Modifying SnO2 with polyacrylamide to enhance the performance of perovskite solar cells. ACS Applied Materials & Interfaces, 2022, 14(29): 34143. [14] XIA H R, LI X, ZHOU J Y, et al. Interfacial chemical bridge constructed by zwitterionic sulfamic acid for efficient and stable perovskite solar cells. ACS Applied Energy Materials, 2020, 3(4): 3186. [15] CHOI K, LEE J, KIM H I, et al. Thermally stable, planar hybrid perovskite solar cells with high efficiency. Energy & Environmental Science, 2018, 11(11): 3238. [16] YANG D, YANG R X, WANG K, et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nature Communications, 2018, 9: 3239. [17] FU P, HUANG L Q, YU W, et al. Efficiency improved for inverted polymer solar cells with electrostatically self-assembled BenMelm-CI ionic liquid layer as cathode interface layer. Nano Energy, 2015, 13: 275. [18] HUANG X K, HU Z Y, XU J, et al. Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 164: 87. [19] AN Z Q, CHEN S Y, LU T, et al. Interfacial modification via aniline molecules with multiple active sites for performance enhancement of n-i-p perovskite solar cells. Journal of Materials Chemistry C, 2023, 11(37): 12750. [20] BI H, GUO Y, GUO M N, et al. Highly efficient and low hysteresis methylammonium-free perovskite solar cells based on multifunctional oteracil potassium interface modification. Chemical Engineering Journal, 2022, 439: 135671. [21] BOB B, SONG T B, CHEN C C, et al. Nanoscale dispersions of gelled SnO2: material properties and device applications. Chemistry of Materials, 2013, 25(23): 4725. [22] HUANG H, CUI P, CHEN Y, et al. 24.8%-efficient planar perovskite solar cells via ligand-engineered TiO2 deposition. Joule, 2022, 6(9): 2186. [23] PENG X, LU H L, ZHUANG J, et al. Enhanced performance of perovskite solar cells using DNA-doped mesoporous-TiO2 as electron transporting layer. Solar Energy, 2020, 206: 855. [24] YOU S, ZENG H P, KU Z L, et al. Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Advanced Materials, 2020, 32(43): 2003990. [25] QIU Z W, GONG H B, ZHENG G H J, et al. Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. Journal of Materials Chemistry C, 2017, 5(28): 7084. [26] ZHAO S H, QIN M C, WANG H, et al. Cascade type-II 2D/3D perovskite heterojunctions for enhanced stability and photovoltaic efficiency. Solar RRL, 2020, 4(10): 2000282. [27] MA Z, ZHOU W Y, HUANG D J, et al. Nicotinamide as additive for microcrystalline and defect passivated perovskite solar cells with 21.7% efficiency. ACS Applied Materials & Interfaces, 2020, 12(47): 52500. [28] LIU W, LIU N J, JI S L, et al. Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nano-Micro Letters, 2020, 12(1): 119. |