Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (9): 1089-1096.DOI: 10.15541/jim20220710
Special Issue: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
DAI Xiaodong1,2(), ZHANG Luwei2, QIAN Yicheng2, REN Zhixin2, CAO Huanqi2(
), YIN Shougen2
Received:
2022-11-28
Revised:
2023-01-27
Published:
2023-09-20
Online:
2023-04-15
Contact:
CAO Huanqi, professor. E-mail: caoh@tjut.edu.cnAbout author:
DAI Xiaodong (1996-), male, Master candidate. E-mail: 1021385583@qq.com
Supported by:
CLC Number:
DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering[J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096.
Fig. 1 Crystal structures of perovskite films prepared with different amounts of antisolvent (a) XRD patterns of perovskite films prepared with different amounts of antisolvent; (b) Magnified XRD patterns of (100) lattice plane diffraction peaks; (c) Half-peak width of (100) lattice plane diffraction peaks of thin films at different antisolvent dosages; (d-f) Top-down SEM images of films prepared by 100, 300 and 500 μL antisolvents and statistics of grain sizes
Fig. 2 (a) PL spectra from the front and back sides of PF-DMSO0.25; (b) Cross-sectional SEM images of PSCs of PF-DMSO0.25 and EDS scanning areas; (c) Lead/tin elemental ratios in different depth regions of the cross-sectional SEM images of PF-DMSO0.25 or PF-DMSO0.50; Colorful figures are available on website
Fig. 3 Phase structure and photoelectric properties of perovskites films PF-DMSOx (a) XRD patterns of films and (b) PCE statistics of devices; (c) Time-resolved photoluminescence spectra; (d) Tauc plots of ultraviolet-visible absorption spectra and (e) ultraviolet photoelectron spectra of PF-DMSO0.50 and PF-DMSO0.25; (f) Energy level relationship, (g) J-V curves, (h) external quantum efficiency and integrated current density, (i) Urbach band edge absorption obtained from EQE spectra and fitted electroluminescence spectra of devices fabricated with PF-DMSO0.50 and PF-DMSO0.25; Colorful figures are available on website
Ingredient | Thickness/μm | Eg/eV | χ/eV | εr | Nc/cm-3 | Nv/cm-3 | μn/(cm2∙ V-1∙s-1) | μp/(cm2∙ V-1∙s-1) | Nd/cm-3 | Na/cm-3 | Nt/cm-3 | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PEDOT: PSS | 0.03 | 2.2 | 3 | 3 | 2.2×1015 | 1.8×1018 | 0.02 | 0.0002 | - | 3.17×1014 | 1×1015 | [ |
Perovskite | 0.6 | 1.25-1.23 | 4.15-4.2 | 100 | 1.0×1018 | 1.0×1018 | 2 | 2 | - | 1.0×1018 | 2.5×1016 | [ |
PCBM | 0.05 | 2.0 | 3.9 | 3.9 | 2.5×1021 | 2.5×1020 | 0.2 | 0.2 | 2.93×1017 | - | 1×1015 | [ |
BCP | 0.01 | 3.5 | 3.7 | 10 | 1.8×1018 | 2.2×1018 | 0.02 | 0.002 | 1×1021 | 1×1010 | 1×10 | [ |
Table 1 Main simulation parameters of perovskite solar cell structures
Ingredient | Thickness/μm | Eg/eV | χ/eV | εr | Nc/cm-3 | Nv/cm-3 | μn/(cm2∙ V-1∙s-1) | μp/(cm2∙ V-1∙s-1) | Nd/cm-3 | Na/cm-3 | Nt/cm-3 | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PEDOT: PSS | 0.03 | 2.2 | 3 | 3 | 2.2×1015 | 1.8×1018 | 0.02 | 0.0002 | - | 3.17×1014 | 1×1015 | [ |
Perovskite | 0.6 | 1.25-1.23 | 4.15-4.2 | 100 | 1.0×1018 | 1.0×1018 | 2 | 2 | - | 1.0×1018 | 2.5×1016 | [ |
PCBM | 0.05 | 2.0 | 3.9 | 3.9 | 2.5×1021 | 2.5×1020 | 0.2 | 0.2 | 2.93×1017 | - | 1×1015 | [ |
BCP | 0.01 | 3.5 | 3.7 | 10 | 1.8×1018 | 2.2×1018 | 0.02 | 0.002 | 1×1021 | 1×1010 | 1×10 | [ |
Fig. 4 Numerical simulation of devices with NG, WO, IG heterojunctions (a) Schematic diagram of the solar cell structures with different vertical composition gradients; (b) Positions of the conduction band, valence band, electron and hole quasi-Fermi levels, (c) electron and hole carrier concentrations, (d) J-V curves and (e) EQE curves; (f) Hole deep-level defect trapping probabilities of normal or inverted gradient devices; Colorful figures are available on website
Fig. S3 Statistical charts of (a) open-circuit voltage, (b) fill factor and (c) short-circuit current density for devices of PF-DMSOx (x=0.20,0.25,0.33,0.50,1.00)
[1] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050.
DOI PMID |
[2] |
XIAO J W, LIU L, ZHANG D, et al. The emergence of the mixed perovskites and their applications as solar cells. Advanced Energy Materials, 2017, 7(20): 1700491.
DOI URL |
[3] |
NING W, GAO F. Structural and functional diversity in lead-free halide perovskite materials. Advanced Materials, 2019, 31(22): 1900326.
DOI URL |
[4] |
ZHAO J, WEI L, JIA C, et al. Metallic tin substitution of organic lead perovskite films for efficient solar cells. Journal of Materials Chemistry A, 2018, 6(41): 20224.
DOI URL |
[5] |
MING Y, HU Y, MEI A, et al. Application of lead acetate additive for printable perovskite solar cell. Journal of Inorganic Materials, 2022, 37(2): 197.
DOI |
[6] | ZANG Z, LI H, JIANG X, et al. Progress and perspective of tin perovskite solar cells. Acta Physico-Chimica Sinica, 2021, 37(4): 2007090. |
[7] |
ZHAO J J, SU X, MI Z, et al. Trivalent Ni oxidation controlled through regulating lithiumcontent to minimize perovskite interfacial recombination. Rare Metals, 2022, 41(1): 96.
DOI |
[8] | The National Renewable Energy Laboratory. Best research-cell effi- ciency chart[2022-11-04]. https://www.nrel.gov/pv/cell-efficiency.html. |
[9] |
SHA W E I, REN X, CHEN L, et al. The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 2015, 106(22): 221104.
DOI URL |
[10] |
SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510.
DOI URL |
[11] |
EPERON G E, HÖRANTNER M T, SNAITH H J. Metal halide perovskite tandem and multiple-junction photovoltaics. Nature Reviews Chemistry, 2017, 1(12): 0095.
DOI URL |
[12] |
LIAO W, ZHAO D, YU Y, et al. Fabrication of efficient low- bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. Journal of the American Chemical Society, 2016, 138(38): 12360.
DOI URL |
[13] |
HU S, OTSUKA K, MURDEY R, et al. Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells. Energy and Environmental Science, 2022, 15: 2096.
DOI URL |
[14] |
LIN R, XU J, WEI M, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603(7899): 73.
DOI |
[15] |
WEI M, XIAO K, WALTERS G, et al. Combining efficiency and stability in mixed tin-lead perovskite solar cells by capping grains with an ultrathin 2D layer. Advanced Materials, 2020, 32(12): 1907058.
DOI URL |
[16] |
ZHU H L, XIAO J, MAO J, et al. Controllable crystallization of CH3NH3Sn0.25Pb0.75I3 perovskites for hysteresis-free solar cells with efficiency reaching 15.2%. Advanced Functional Materials, 2017, 27(11): 1605469.
DOI URL |
[17] |
ZHANG T, BAN H, SUN Q, et al. Preventing inhomogeneous elemental distribution and phase segregation in mixed Pb-Sn inorganic perovskites via incorporating PbS quantum dots. Journal of Energy Chemistry, 2022, 65: 179.
DOI URL |
[18] |
ZHU H L, CHOY W C H. Crystallization, properties, and challenges of low-bandgap Sn-Pb binary perovskites. Solar RRL, 2018, 2(10): 1800146.
DOI URL |
[19] |
KANG H, YOON W. Microstructural morphology changes of the lead-tin eutectic alloy by different undercooling levels. Materials Transactions, 2004, 45(10): 2956.
DOI URL |
[20] |
ZHANG Z, LIANG J, ZHENG Y, et al. Balancing crystallization rate in a mixed Sn-Pb perovskite film for efficient and stable perovskite solar cells of more than 20% efficiency. Journal of Materials Chemistry A, 2021, 9(33): 17830.
DOI URL |
[21] |
LEE S J, SHIN S S, KIM Y C, et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2- pyrazine complex. Journal of the American Chemical Society, 2016, 138(12): 3974.
DOI URL |
[22] |
ZHU Z, CHUEH C C, LI N, et al. Realizing efficient lead-free formamidinium tin triiodide perovskite solar cells via a sequential deposition route. Advanced Materials, 2018, 30(6): 1703800.
DOI URL |
[23] |
SAVILL K J, ULATOWSKI A M, FARRAR M D, et al. Impact of tin fluoride additive on the properties of mixed tin-lead iodide perovskite semiconductors. Advanced Functional Materials, 2020, 30(52): 2005594.
DOI URL |
[24] |
SHAO S, DONG J, DUIM H, et al. Enhancing the crystallinity and perfecting the orientation of formamidinium tin iodide for highly efficient Sn-based perovskite solar cells. Nano Energy, 2019, 60: 810.
DOI URL |
[25] | HU H, ZHOU X, CHEN J, et al. Crystallization regulation and morphological evolution for HTM-free tin-lead (1.28 eV) alloyed perovskite solar cells. Energy and Environmental Materials, 2023, 6(2): e12322. |
[26] |
CAO D H, STOUMPOS C C, YOKOYAMA T, et al. Thin films and solar cells based on semiconducting two-dimensional ruddlesden-popper (CH3(CH2)3NH3)2(CH3NH3)n-1SnnI3n+1 perovskites. ACS Energy Letters, 2017, 2(5): 982.
DOI URL |
[27] |
LIAO Y, LIU H, ZHOU W, et al. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. Journal of the American Chemical Society, 2017, 139(19): 6693.
DOI PMID |
[28] |
LIAN X, CHEN J, ZHANG Y, et al. Highly efficient Sn/Pb binary perovskite solar cell via precursor engineering: a two-step fabrication process. Advanced Functional Materials, 2019, 29(5): 1807024.
DOI URL |
[29] |
XIAO K, LIN R, HAN Q, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface- anchoring zwitterionic antioxidant. Nature Energy, 2020, 5(11): 870.
DOI |
[30] |
JIANG X, LI H, ZHOU Q, et al. One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. Journal of the American Chemical Society, 2021, 143(29): 10970.
DOI URL |
[31] |
CAO J, LOI H L, XU Y, et al. High-performance tin-lead mixed- perovskite solar cells with vertical compositional gradient. Advanced Materials, 2022, 34(6): 2107729.
DOI URL |
[32] |
WU T, LIU X, LUO X, et al. Heterogeneous FASnI3 absorber with enhanced electric field for high-performance lead-free perovskite solar cells. Nano-Micro Letters, 2022, 14(1): 99.
DOI |
[33] |
CHEN P, BAI Y, WANG S, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Advanced Functional Materials, 2018, 28(17): 1706923.
DOI URL |
[34] |
JIAO B, LIU X, QUAN Z, et al. Performance of perovskite solar cells doped with L-arginine. Journal of Inorganic Materials, 2022, 37(6): 669.
DOI URL |
[35] |
ZHANG W, HUANG L, ZHENG W, et al. Revealing key factors of efficient narrow-bandgap mixed lead-tin perovskite solar cells via numerical simulations and experiments. Nano Energy, 2022, 96: 107078.
DOI URL |
[36] |
RAOUI Y, EZ-ZAHRAOUY H, KAZIM S, et al. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: mechanistic insights. Journal of Energy Chemistry, 2021, 54: 822.
DOI |
[37] | BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films, 2000, 361: 527. |
[38] |
CHANG J, ZHU H, LI B, et al. Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. Journal of Materials Chemistry A, 2016, 4(3): 887.
DOI URL |
[39] |
ZHAO P, LIU Z, LIN Z, et al. Device simulation of inverted CH3NH3PbI3-xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Solar Energy, 2018, 169: 11.
DOI URL |
[40] |
WANG A, GAN X, YU J. Simulation of narrow-bandgap mixed Pb-Sn perovskite solar cells with inverted p-i-n structure. Optical Materials, 2021, 112: 110751.
DOI URL |
[41] |
PANDEY R, SHARMA S, MADAN J, et al. Numerical simulations of 22% efficient all-perovskite tandem solar cell utilizing lead-free and low lead content halide perovskites. Journal of Micromechanics and Microengineering, 2022, 32(1): 014004.
DOI |
[42] |
MINEMOTO T, KAWANO Y, NISHIMURA T, et al. Theoretical analysis of band alignment at back junction in Sn-Ge perovskite solar cells with inverted p-i-n structure. Solar Energy Materials and Solar Cells, 2020, 206: 110268.
DOI URL |
[43] |
GHIMIRE K, ZHAO D, YAN Y, et al. Optical response of mixed methylammonium lead iodide and formamidinium tin iodide perovskite thin films. AIP Advances, 2017, 7(7): 075108.
DOI URL |
[44] |
GOYAL A, MCKECHNIE S, PASHOV D, et al. Origin of pronounced nonlinear band gap behavior in lead-tin hybrid perovskite alloys. Chemistry of Materials, 2018, 30(11): 3920.
DOI URL |
[45] |
RAJAGOPAL A, STODDARD R J, HILLHOUSE H W, et al. On understanding bandgap bowing and optoelectronic quality in Pb-Sn alloy hybrid perovskites. Journal of Materials Chemistry A, 2019, 7(27): 16285.
DOI URL |
[46] |
MOIZ S A, ALAHMADI A N M. Design of dopant and lead-free novel perovskite solar cell for 16.85% efficiency. Polymers, 2021, 13(13): 2110.
DOI URL |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[6] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[7] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[8] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[9] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[10] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[11] | ZHANG Lun, LYU Mei, ZHU Jun. Research Progress of Cs2AgBiBr6 Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2023, 38(9): 1044-1054. |
[12] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[13] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[14] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[15] | MA Tingting, WANG Zhipeng, ZHANG Mei, GUO Min. Performance Optimization of Ultra-long Stable Mixed Cation Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(12): 1387-1395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||