Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (12): 1351-1357.DOI: 10.15541/jim20220179
Previous Articles Next Articles
SUN Yangshan1,3(), YANG Zhihua2, CAI Delong2, ZHANG Zhengyi1,3, LIU Qi1,3, FANG Shuqing1,3, FENG Liang1,3, SHI Lifen1,3, WANG Youle1,3, JIA Dechang2
Received:
2022-03-30
Revised:
2022-05-25
Published:
2022-12-20
Online:
2022-06-03
About author:
SUN Yangshan (1989-), male, senior engineer. E-mail: ashan19890608@163.com
Supported by:
CLC Number:
SUN Yangshan, YANG Zhihua, CAI Delong, ZHANG Zhengyi, LIU Qi, FANG Shuqing, FENG Liang, SHI Lifen, WANG Youle, JIA Dechang. Crystallization Kinetics, Properties of α-cordierite Based Glass-ceramics Prepared by Glass Powder Sintering[J]. Journal of Inorganic Materials, 2022, 37(12): 1351-1357.
Powder | MgO | Al2O3 | SiO2 | B2O3 | Molar ratio of MgO : Al2O3 : SiO2 |
---|---|---|---|---|---|
S | 13.80 g (21.38%) | 34.90 g (21.19%) | 51.30 g (52.8%) | 5.00 g (4.45%) | 2 : 2 : 5 |
NS1 | 24.00 g (33.56%) | 22.00 g (12.08%) | 54.00 g (50.34%) | 5.00 g (4.02%) | 6 : 2 : 9 |
NS2 | 24.00 g (32.26%) | 22.00 g (11.61%) | 54.00 g (48.39%) | 10.00 g (7.74%) | 6 : 2 : 9 |
NS3 | 24.00 g (31.06%) | 22.00 g (11.18%) | 54.00 g (46.58%) | 15.00 g (11.18%) | 6 : 2 : 9 |
Table 1 Proportion of MAS based glass raw materials (molar percent)
Powder | MgO | Al2O3 | SiO2 | B2O3 | Molar ratio of MgO : Al2O3 : SiO2 |
---|---|---|---|---|---|
S | 13.80 g (21.38%) | 34.90 g (21.19%) | 51.30 g (52.8%) | 5.00 g (4.45%) | 2 : 2 : 5 |
NS1 | 24.00 g (33.56%) | 22.00 g (12.08%) | 54.00 g (50.34%) | 5.00 g (4.02%) | 6 : 2 : 9 |
NS2 | 24.00 g (32.26%) | 22.00 g (11.61%) | 54.00 g (48.39%) | 10.00 g (7.74%) | 6 : 2 : 9 |
NS3 | 24.00 g (31.06%) | 22.00 g (11.18%) | 54.00 g (46.58%) | 15.00 g (11.18%) | 6 : 2 : 9 |
Powder | E/ (kJ·mol-1) | A | k (Tp) | ||||
---|---|---|---|---|---|---|---|
5 ℃/ min | 10 ℃/ min | 15 ℃/ min | 20 ℃/ min | Mean | |||
S | 330.56 | 4.39×1012 | 0.117 | 0.265 | 0.348 | 0.417 | 0.285 |
NS1 | 332.06 | 3.54×1012 | 0.118 | 0.245 | 0.345 | 0.430 | 0.285 |
NS2 | 412.12 | 4.68×1015 | 0.141 | 0.287 | 0.424 | 0.528 | 0.345 |
NS3 | 417.86 | 8.05×1015 | 0.156 | 0.271 | 0.412 | 0.580 | 0.355 |
Table 2 Non-isothermal crystallization kinetic parameters of the glass powders
Powder | E/ (kJ·mol-1) | A | k (Tp) | ||||
---|---|---|---|---|---|---|---|
5 ℃/ min | 10 ℃/ min | 15 ℃/ min | 20 ℃/ min | Mean | |||
S | 330.56 | 4.39×1012 | 0.117 | 0.265 | 0.348 | 0.417 | 0.285 |
NS1 | 332.06 | 3.54×1012 | 0.118 | 0.245 | 0.345 | 0.430 | 0.285 |
NS2 | 412.12 | 4.68×1015 | 0.141 | 0.287 | 0.424 | 0.528 | 0.345 |
NS3 | 417.86 | 8.05×1015 | 0.156 | 0.271 | 0.412 | 0.580 | 0.355 |
[1] |
ZHI M S. Sintering additives to eliminate interphases in cordierite ceramics. Journal of the American Ceramic Society, 2010, 88(5): 1297-1301.
DOI URL |
[2] |
OKUYAMA M, FUKUI T, SAKURAI C. Phase transformation and mechanical properties of B2O3-doped cordierite derived from complex-alkoxide. Journal of Materials Science, 1993, 28(16): 4465-4470.
DOI URL |
[3] |
HUA S, LIANG K, FENG Z, et al. Characterization of cordierite-based glass-ceramics produced from fly ash. Journal of Non-Crystalline Solids, 2004, 337(2): 157-160.
DOI URL |
[4] |
SUNG Y M. Mechanical properties of α-cordierite and β-spodumene glass-ceramics prepared by sintering and crystallization heat treatments. Ceramics International, 1997, 23(5): 401-407.
DOI URL |
[5] |
YU Y, HAO X, SONG L, et al. Synthesis and characterization of single phase and low temperature co-fired cordierite glass-ceramics from perlite. Journal of Non-Crystalline Solids, 2016, 448: 36-42.
DOI URL |
[6] |
RAO R T. Ceramic and glass-ceramic packaging in the 1990s. Journal of the American Ceramic Society, 1991, 74(5): 895-908.
DOI URL |
[7] |
WANG S, LIANG K. Crystallization behavior and infrared radiation property of nickel-magnesium cordierite based glass-ceramics. Journal of Non-Crystalline Solids, 2008, 354(14): 1522-1525.
DOI URL |
[8] |
SUN Y, CAI D, YANG Z, et al. Effect of holding time on microstructure, mechanical, water resistance and dielectric properties of α-cordierite glass-ceramic coating on porous BN/Si2N2O ceramic. Ceramics International, 2018, 44(13): 15764-15769.
DOI URL |
[9] |
WANG F, ZHANG W, CHEN X, et al. Synthesis and characterization of low CTE value La2O3-B2O3-CaO-P2O5 glass/cordierite composites for LTCC application. Ceramics International, 2019, 45(6): 7203-7209.
DOI URL |
[10] | PRUNIER A R. Strengthened cordierite having minor amounts of calcia. US Patent 4745092, 1988.05.17. |
[11] |
WU J M, SHIANG H W. Effect of (B2O3, P2O5) additives on microstructural development and phase-transformation kinetics of stoichiometric cordierite glass. Journal of the American Ceramic Society, 2010, 83(5): 1259-1265.
DOI URL |
[12] |
BANJURAIZAH J, MOHAMAD H, AHMAD ZA. Densification and crystallization of nonstoichiometric cordierite glass with excess MgO synthesized from kaolin and talc. Journal of the American Ceramic Society, 2011, 94(3): 687-694.
DOI URL |
[13] |
BANJURALIZA J, MOHARMAD H, AHMAD Z A. Synthesis and characterization of xMgO-1.5Al2O3-5SiO2 (x=2.6-3.0) system using mainly talc and kaolin through the glass route. Materials Chemistry and Physics, 2011, 129(3): 910-918.
DOI URL |
[14] |
GOEL A, SHAABAN E R, MELO F, et al. Non-isothermal crystallization kinetic studies on MgO-Al2O3-SiO2-TiO2glass. Journal of Non-Crystalline Solids, 2007, 353(24/25): 2383-2391.
DOI URL |
[15] |
HAN L, SONG J, LIN C, et al. Crystallization, structure and properties of MgO-Al2O3-SiO2 highly crystalline transparent glass-ceramics nucleated by multiple nucleating agents. Journal of the European Ceramic Society, 2018, 38(13): 4533-4542.
DOI URL |
[16] |
SHI Z, LIANG K, ZHANG Q, et al. Effect of cerium addition on phase transformation and microstructure of cordierite ceramics prepared by Sol-Gel method. Journal of Materials Science, 2001, 36(21): 5227-5230.
DOI URL |
[17] | MCMILAN P W. Glass-Ceramics, London: Academic press, 1964. |
[18] |
MEI S, YANG J, FERREIRA J. The densification and morphology of cordierite-based glass-ceramics. Materials Letters, 2001, 47(4/5): 205-211.
DOI URL |
[19] |
CHAO C H, LU H Y. Crystallization of Na2O-doped colloidal gel-derived silica. Materials Science and Engineering: A, 2000, 282(1/2): 123-130.
DOI URL |
[20] |
MALACHEVSKY M T, FISCINA J E, ESPARZA D A. Preparation of synthetic cordierite by solid-state reaction via bismuth oxide flux. Journal of the American Ceramic Society, 2001, 84(7): 1575-1577.
DOI URL |
[21] |
DYATLOVA E M, MINENKOVA G Y, KOLONTAEVA T V. Intensification of sintering of mullite-cordierite ceramics using mineralizers. Glass and Ceramics, 2000, 57(11/12): 427-430.
DOI URL |
[22] |
REBEN M, HONG L. Thermal stability and crystallization kinetics of MgO-Al2O3-B2O3-SiO2 glasses. International Journal of Applied Glass Science, 2011, 2(2): 96-107.
DOI URL |
[23] |
LUO W, BAO Z, JIANG W, et al. Effect of B2O3 on the crystallization, structure and properties of MgO-Al2O3-SiO2 glass- ceramics. Ceramics International, 2019, 45(18): 24750-24756.
DOI URL |
[24] |
WANG X, RUAN J M, CHEN Q Y. Effects of surfactants on the microstructure of porous ceramic scaffolds fabricated by foaming for bone tissue engineering. Materials Research Bulletin, 2009, 44(6): 1275-1279.
DOI URL |
[25] |
KISSINGER H E. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957, 29(11): 1702-1706.
DOI URL |
[26] | FOKIN V M, YURITSYN N S, ZANOTTO E D. Nucleation and crystallization kinetics in silicate glasses: theory and experiment. in nucleation theory and applications. Wiley-VCH Verlag GmbH & Co. KGaA, 2005. |
[27] |
FLYNN J H. Thermal analysis kinetics—past, present and future. Thermochimica Acta, 1992, 203: 519-526.
DOI URL |
[28] | HÖLLAND W, BEALL G. Glass-ceramic technology. Westernville: The American Ceramic Society, 2002. |
[29] |
WANG S, JIA D, YANG Z, et al. Effect of BN content on microstructures, mechanical and dielectric properties of porous BN/Si3N4 composite ceramics prepared by gel casting. Ceramics International, 2013, 39(4): 4231-4237.
DOI URL |
[30] |
BANJURAIZAH J, MOHAMAD H, AHMAD Z A. Crystal structure of single phase and low sintering temperature of α-cordierite synthesized from talc and kaolin. Journal of Alloys and Compounds, 2009, 482(1/2): 429-436.
DOI URL |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[5] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[6] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[7] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[8] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[9] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[10] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. |
[11] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. |
[12] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[13] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[14] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
[15] | CHEN Lei, HU Hailong. Evolution of Electric Field and Breakdown Damage Morphology for Flexible PDMS Based Dielectric Composites [J]. Journal of Inorganic Materials, 2023, 38(2): 155-162. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 520
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 381
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||