Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 683-690.DOI: 10.15541/jim20210652
• RESEARCH LETTER • Previous Articles Next Articles
XU Puhao(), ZHANG Xiangzhao, LIU Guiwu(
), ZHANG Mingfen, GUI Xinyi, QIAO Guanjun(
)
Received:
2021-10-22
Revised:
2022-01-19
Published:
2022-06-20
Online:
2022-01-24
Contact:
LIU Guiwu, professor. E-mail: gwliu76@ujs.edu.cn;About author:
XU Puhao (1993–), male, PhD candidate. E-mail: 13667004282@163.com
Supported by:
CLC Number:
XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal[J]. Journal of Inorganic Materials, 2022, 37(6): 683-690.
Fig. 1 BSE images of four nominal Al-Ti alloys (a) Al-10Ti; (b) Al-20Ti; (c) Al-30Ti; (d) Al-40Ti. The black dots are the diamond particles introduced during the polishing
Fig. 3 Cross-sectional BSE images of SiC/SiC joints brazed using the four nominal Al-Ti alloys (a-h) and corresponding EDS elemental mapping (i) (a, b) Al-10Ti; (c, d) Al-20Ti; (e, f) Al-30Ti; (g, h) Al-40Ti
Data from | Elemental composition /% | Possible phases | |||
---|---|---|---|---|---|
Ti | Al | C | Si | ||
0.87 | 98.04 | ‒ | 1.09 | (Al) | |
55.33 | ‒ | 45.67 | ‒ | TiC | |
25.85 | 62.83 | ‒ | 11.32 | (Al,Si)3Ti | |
‒ | 98.91 | ‒ | 1.09 | (Al) | |
53.98 | 0.06 | 45.11 | 0.84 | TiC | |
26.27 | 59.23 | 2.47 | 12.03 | (Al,Si)3Ti | |
48.61 | 1.85 | 31.39 | 18.15 | Ti3Si(Al)C2 | |
50.29 | 1.26 | 30.42 | 18.03 | Ti3Si(Al)C2 |
Table 1 EDS results of partial phases in joint interlayers (atom percent)
Data from | Elemental composition /% | Possible phases | |||
---|---|---|---|---|---|
Ti | Al | C | Si | ||
0.87 | 98.04 | ‒ | 1.09 | (Al) | |
55.33 | ‒ | 45.67 | ‒ | TiC | |
25.85 | 62.83 | ‒ | 11.32 | (Al,Si)3Ti | |
‒ | 98.91 | ‒ | 1.09 | (Al) | |
53.98 | 0.06 | 45.11 | 0.84 | TiC | |
26.27 | 59.23 | 2.47 | 12.03 | (Al,Si)3Ti | |
48.61 | 1.85 | 31.39 | 18.15 | Ti3Si(Al)C2 | |
50.29 | 1.26 | 30.42 | 18.03 | Ti3Si(Al)C2 |
Fig. 4 Cross-sectional BSE images of SiC/Al-20Ti/SiC joints brazed with interlayers of different thickness (a) ~25 μm; (b) 50 μm; (c) 70 μm; (d) 100 μm
Fig. 5 Interfacial (a) TEM and (b?f) HRTEM images of SiC/Al-20Ti/SiC joint sample with interlayer thickness of ~25 μm and the corresponding (g?i) SAED patterns
Fig. 7 Typical fracture surface morphologies of SiC/SiC joints brazed using different nominal Al-Ti alloys (a, b) Al-10Ti; (c, d) Al-20Ti; (e, f) Al-30Ti ; (g, h) Al-40Ti
[1] |
LIU G W, ZHANG X Z, YANG J, et al. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): joining processes, joint strength, and interfacial behavior. Journal of Advanced Ceramics, 2019, 8(1): 19-38.
DOI URL |
[2] |
ZHAO S, YANG Z C, ZHOU X G. Fracture behavior of SiC/SiC composites with different interfaces. Journal of Inorganic Materials, 2016, 31(1): 58-62.
DOI URL |
[3] |
FERNIE J, DREW R, KNOWLES K. Joining of engineering ceramics. International Materials Reviews, 2009, 54: 283-331.
DOI URL |
[4] |
YOON D H, REIMANIS I E. A review on the joining of SiC for high-temperature applications. Journal of the Korean Ceramic Society, 2020, 57(5): 246-270.
DOI URL |
[5] |
VALENZA F, GAMBARO S, MUOLO M L, et al. Wetting of SiC by Al-Ti alloys and joining by in-situ formation of interfacial Ti3Si(Al)C2. Journal of the European Ceramic Society, 2018, 38(11): 3727-3734.
DOI URL |
[6] |
LIU Y, HUANG Z R, LIU X J. Joining of sintered silicon carbide using ternary Ag-Cu-Ti active brazing alloy. Ceramics International, 2009, 35(8): 3479-3484.
DOI URL |
[7] |
XIONG H P, WEI M, XIE Y H, et al. Control of interfacial reactions and strength of the SiC/SiC joints brazed with newly- developed Co-based brazing alloy. Journal of Materials Research, 2007, 22(10): 2727-2736.
DOI URL |
[8] |
KOLTSOV A, HODAJ F, EUSTATHOPOULOS N. Brazing of AlN to SiC by Pr silicides: physicochemichal aspects. Materials Science and Engineering: A, 2008, 495(1/2): 259-264.
DOI URL |
[9] | RICCARDI B, NANNETTI C A, WOLTERSDORF J, et al. Joining of SiC based ceramics and composites with Si-16Ti and Si-18Cr eutectic alloys. International Journal of Materials & Product Technology, 2004, 20(5): 440-451. |
[10] |
ZHAO S T, ZHAGN X Z, LIU G W, et al. Surface metallization of SiC ceramic by Mo-Ni-Si coatings for improving its wettability by molten Ag. Rare Metal Materials and Engineering, 2018, 47(3): 759-765.
DOI URL |
[11] |
LIU G W, MUOLO M L, VALENZA F, et al. Survey on wetting of SiC by molten metals. Ceramics International, 2010, 36(4): 1177-1188.
DOI URL |
[12] | ZHAO H T, HUANG J H, ZHANG H, et al. Vacuum brazing of Si/SiC ceramic and low expansion titanium alloy by using Cu-Ti fillers. Rare Metal Materials and Engineering, 2007, 36(12): 2184-2188. |
[13] |
LI J K, LIU L, LIU X. Joining of SiC ceramic by 22Ti-78Si high- temperature rutectic brazing alloy. Journal of Inorganic Materials, 2011, 26(12): 1314-1318.
DOI URL |
[14] |
FU W, SONG X G, TIAN R C, et al. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties. Journal of Materials Science and Technology, 2020, 40: 15-23.
DOI URL |
[15] | XU P H, GUI X Y, ZHANG X Z, et al. Wetting and interfacial behavior of Al-Ti/4H-SiC system: A combined study of experiment and DFT simulation. Ceramics International, 2021, 47: 69-77. |
[16] |
HAO Z T, WANG D P, YANG Z W, et al. Microstructural evolution and mechanical properties of FeNi42alloy and SiC ceramic joint vacuum brazed with Ag-based filler metals. Ceramics International, 2020, 46(8): 12795-12805.
DOI URL |
[17] |
PRAKASH P, MOHANDAS T, RAJU P D. Microstructural characterization of SiC ceramic and SiC-metal active metal brazed joints. Scripta Materialia, 2005, 52(11): 1169-1173.
DOI URL |
[18] |
TIAN W B, SUN Z M, ZHANG P, et al. Brazing of silicon carbide ceramics with Ni-Si-Ti powder mixtures. Journal of the Australian Ceramic Society, 2017, 53(2): 511-516.
DOI URL |
[19] |
SUDMEYER I, HETTESHEIMER T, ROHDE M. On the shear strength of laser brazed SiC-steel joints: effects of braze metal fillers and surface patterning. Ceramics International, 2010, 36(3): 1083-1090.
DOI URL |
[20] |
CHEN Z B, HU S P, SONG X G, et al. Brazing of SiC ceramics pretreated by chromium coating using inactive AgCu filler metal. International Journal of Applied Ceramic Technology, 2020, 17(6): 2591-2597.
DOI URL |
[21] |
LIU Y, ZHU Y Z, YANG Y, et al. Microstructure of reaction layer and its effect on the joining strength of SiC/SiC joints brazed using Ag-Cu-In-Ti alloy. Journal of Advanced Ceramics, 2014, 3(1): 71-75.
DOI URL |
[22] |
MOSZNER F, MATA-OSORO G, CHIODI M, et al. Mechanical behavior of SiC joints brazed using an active Ag-Cu-In-Ti braze at elevated temperatures. International Journal of Applied Ceramic Technology, 2017, 14(4): 703-711.
DOI URL |
[23] |
HE H M, LU C Y, HE H M, et al. Characterization of SiC ceramic joints brazed using Au-Ni-Pd-Ti high-temperature filler alloy. Materials, 2019, 12(6): 931.
DOI URL |
[24] | QIN Q, ZHANG J, LU CJ, et al. Microstructure and mechanical properties of the SiC/Zr4 joints brazed with TiZrNiCu filler for nuclear application. Progress in Natural Science-Materials International, 2018, 28(3): 124-131. |
[25] |
XIONG H P, WEI M, XIE Y H, et al. Brazing of SiC to a wrought nickel-based superalloy using CoFeNi(Si, B)CrTi filler metal. Materials Letters, 2007, 61(25): 4662-4665.
DOI URL |
[26] |
SONG X G, CHEN Z B, HU S P, et al. Wetting behavior and brazing of titanium-coated SiC ceramics using Sn0.3Ag0.7Cu filler. Journal of the American Ceramic Society, 2019, 103(2): 912-920.
DOI URL |
[27] |
CHEN Z B, BIAN H, NIU C N, et al. Titanium-deposition assisted brazing of SiC ceramics using inactive AgCu filler. Materials Characterization, 2018, 142: 219-222.
DOI URL |
[28] |
DAI X Y, CAO J, CHEN Z, et al. Brazing SiC ceramic using novel B4C reinforced Ag-Cu-Ti composite filler. Ceramics International, 2016, 42(5): 6319-6328.
DOI URL |
[29] |
LIU Y, QI Q, ZHU Y, et al. Microstructure and joining strength evaluation of SiC/SiC joints brazed with SiCp/Ag-Cu-Ti hybrid tapes. Journal of Adhesion Science and Technology, 2015, 29(15): 1563-1571.
DOI URL |
[30] |
LI Z, WEI R W, WEN Q, et al. Microstructure and mechanical properties of SiC ceramic joints vacuum brazed with in-situ formed SiC particulate reinforced Si-24Ti alloy. Vacuum, 2019, 173: 109160.
DOI URL |
[31] |
ZHONG Z H, HOU G X, ZHU Z X, et al. Microstructure and mechanical strength of SiC joints brazed with Cr3C2 particulate reinforced Ag-Cu-Ti brazing alloy. Ceramics International, 2018, 44(10): 11862-11868.
DOI URL |
[32] |
SONG Y Y, LIU D, HU S P, et al. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic. Journal of the European Ceramic Society, 2019, 39(4): 696-704.
DOI URL |
[33] |
ZHOU X B, LI Y B, LI Y F, et al. Residual thermal stress of SiC/Ti3SiC2/SiC joints calculation and relaxed by post-annealing. International Journal of Applied Ceramic Technology, 2018, 15: 1157-1165.
DOI URL |
[34] |
ZHOU X B, HAN Y H, SHEN X F, et al. Fast joining SiC ceramics with Ti3SiC2 tape film by electric field-assisted sintering technology. Journal of Nuclear Materials, 2015, 466: 322-327.
DOI URL |
[35] |
YANG D X, ZHOU Y, YAN X H, et al. Highly conductive wear resistant Cu/Ti3SiC2(TiC/SiC) co-continuous composites via vacuum infiltration process. Journal of Advanced Ceramics, 2020, 9(1): 83-93.
DOI URL |
[36] |
ZHANG X Z, LIU G W, TAO J N, et al. Brazing of WC-8Co cemented carbide to steel using Cu-Ni-Al alloys as filler metal: microstructures and joint mechanical behavior. Journal of Materials Science and Technology, 2018, 34(7): 1180-1188.
DOI URL |
[37] |
ZHOU X B, JING L, KWON Y D, et al. Fabrication of SiCw/Ti3SiC2 composites with improved thermal conductivity and mechanical properties using spark plasma sintering. Journal of Advanced Ceramics, 2020, 9(4): 462-470.
DOI URL |
[1] | QUAN Wenxin, YU Yiping, FANG Bing, LI Wei, WANG Song. Oxidation Behavior and Meso-macro Model of Tubular C/SiC Composites in High-temperature Environment [J]. Journal of Inorganic Materials, 2024, 39(8): 920-928. |
[2] | TAN Min, CHEN Xiaowu, YANG Jinshan, ZHANG Xiangyu, KAN Yanmei, ZHOU Haijun, XUE Yudong, DONG Shaoming. Microstructure and Oxidation Behavior of ZrB2-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2024, 39(8): 955-964. |
[3] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[4] | WANG Kanglong, YIN Jie, CHEN Xiao, WANG Li, LIU Xuejian, HUANG Zhengren. Effect of Particle Grading on Properties of Silicon Carbide Ceramics Prepared by Selective Laser Sintering Printing Combined with Solid-phase Sintering at Atmospheric Pressure [J]. Journal of Inorganic Materials, 2024, 39(7): 754-760. |
[5] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[6] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[7] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[8] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[9] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[10] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[11] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[12] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[13] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
[14] | ZHENG Bin, KANG Kai, ZHANG Qing, YE Fang, XIE Jing, JIA Yan, SUN Guodong, CHENG Laifei. Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method [J]. Journal of Inorganic Materials, 2024, 39(6): 733-740. |
[15] | HE Zongbei, CHEN Fang, LIU Dianguang, LI Tongye, ZENG Qiang. Sintering Behavior of Simulating Core FCM Fuel via Hot Oscillatory Pressing [J]. Journal of Inorganic Materials, 2024, 39(5): 501-508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||