Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 691-696.DOI: 10.15541/jim20210491
• RESEARCH LETTER • Previous Articles
LIN Aming1,2(), SUN Yiyang1,2(
)
Received:
2021-08-05
Revised:
2021-08-20
Published:
2022-06-20
Online:
2021-11-01
Contact:
SUN Yiyang, professor. E-mail: yysun@mail.sic.ac.cnAbout author:
LIN Aming (1996–), female, Master candidate. E-mail: linaming@student.sic.ac.cn
Supported by:
CLC Number:
LIN Aming, SUN Yiyang. Stability of Low-index Surfaces of Cs2SnI6 Studied by First-principles Calculations[J]. Journal of Inorganic Materials, 2022, 37(6): 691-696.
Fig. 2 Seven supercell models of Cs2SnI6 surfaces (a) For (001) surface: CsI2-terminated and SnI4-terminated slabs; (b) For (011) surface: I4-terminated and Cs2SnI2-terminated slabs; (c) For (111) surface: non-stoichiometric Sn-terminated, CsI3-terminated and stoichiometric CsI3-terminated slabs
Fig. 3 Calculated total cleavage, relaxation and surface energies of two complementary non-stoichiometric terminations in (001), (011) and (111) orientations, which are compared with the cleavage, relaxation and surface energies of the stoichiometric CsI3-terminated (111) surface
Fig. 4 Illustration of the accessible chemical potential region for Cs2SnI6 Constraints imposed by the formation of competing secondary phases resulting in the allowed region shaded in green
Fig. 5 Stability of low-index surfaces of Cs2SnI6 as a function of chemical potentials (a) Analysis of stability of the two terminations of Cs2SnI6 (001) surface with respect to the allowed region for maintaining equilibrium with the primary phase Cs2SnI6. The orange and blue regions indicate the stable region for CsI2- and SnI4-terminations, respectively; (b) Similar to (a) for the Cs2SnI6 (011) surface. The orange and blue regions are for the I4- and Cs2SnI2-terminations, respectively; (c) Similar to (a) for the Cs2SnI6 (111) surface. The orange and blue regions are for the Sn- and stoichiometric CsI3-terminations, respectively; (d) Surface energies of the seven surface models of Cs2SnI6 as a function of the chemical potentials colorful figures are available on website
[1] |
STRANKS S D, EPERON G E, GRANCINI G, et al. Electron- hole diffusion lengths exceeding trihalide perovskite absorber. Science, 2013, 342(6156): 341-344.
DOI URL |
[2] |
HEO J H, IM S H, NOH J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7: 486-491.
DOI URL |
[3] |
SHAO Y, XIAO Z, BI C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 2014, 5: 5784.
DOI URL |
[4] |
XING G, MATHEWS N, LIM S S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344-347.
DOI URL |
[5] |
TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light- emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9: 687-692.
DOI URL |
[6] |
GAO L, ZENG K, GUO J, et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity. Nano Letters, 2016, 16(12): 7446-7454.
DOI URL |
[7] |
HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photonics, 2014, 8: 489-494.
DOI URL |
[8] |
STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019-9038.
DOI URL |
[9] |
NOEL N K, STRANKS S D, ABATE A, et al. Lead-free organic- inorganic tin halide perovskites for photovoltaic applications. Energy and Environmental Science, 2014, 7(9): 3061-3068.
DOI URL |
[10] |
CHUNG I, LEE B, HE J, et al. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485: 486-489.
DOI URL |
[11] |
KUMAR M H, DHARANI S, LEONG W L, et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Advanced Materials, 2014, 26(41): 7122-7127.
DOI URL |
[12] |
MARSHALL K P, WALKER M, WALTON R I, et al. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy, 2016, 1: 16178.
DOI URL |
[13] |
CHUNG I, SONG J H, IM J, et al. CsSnI3: semiconductor or metal? high electrical conductivity and strong near-infrared photoluminescence from a single material. high hole mobility and phase-transitions. Journal of the American Chemical Society, 2012, 134(20): 8579-8587.
DOI URL |
[14] |
LEE B, STOUMPOS C C, ZHOU N, et al. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. Journal of the American Chemical Society, 2014, 136(43): 15379-15385.
DOI URL |
[15] |
SAPAROV B, SUN J P, MENG W, et al. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chemistry of Materials, 2016, 28(7): 2315-2322.
DOI URL |
[16] |
QIU X, CAO B, YUAN S, et al. From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Materials and Solar Cells, 2017, 159: 227-234.
DOI URL |
[17] |
WANG X D, HUANG Y H, LIAO J F, et al. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. Journal of the American Chemical Society, 2019, 141(34): 13434-13441.
DOI URL |
[18] |
LIU F, DING C, ZHANG Y, et al. Colloidal synthesis of air-stable alloyed CsSn1-xPbxI3 perovskite nanocrystals for use in solar cells. Journal of the American Chemical Society, 2017, 139(46): 16708-16719.
DOI URL |
[19] |
DOLZHNIKOV D S, WANG C, XU Y, et al. Ligand-free, quantum- confined Cs2SnI6 perovskite nanocrystals. Chemistry of Materials, 2017, 29(18): 7901-7907.
DOI URL |
[20] |
MAUGHAN A E, GANOSE A M, BORDELON M M, et al. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. Journal of the American Chemical Society, 2016, 138(27): 8453-8464.
DOI URL |
[21] |
XIAO Z, ZHOU Y, HOSONO H, et al. Intrinsic defects in a photovoltaic perovskite variant Cs2SnI6. Physical Chemistry Chemical Physics, 2015, 17(29): 18900-18903.
DOI URL |
[22] |
KAPIL G, OHTA T, KOYANAGI T, et al. Investigation of interfacial charge transfer in solution processed Cs2SnI6 thin films. Journal of Physical Chemistry C, 2017, 121(24): 13092-13100.
DOI URL |
[23] | SHIN H O, KIM B M, JANG T, et al. Surface state-mediated charge transfer of Cs2SnI6 and its application in dye-sensitized solar cells. Advanced Energy Materials, 2019, 9(3): 1803243. |
[24] | XU Y, LI S, ZHANG Z, et al. Ligand-mediated synthesis of colloidal Cs2SnI6 three-dimensional nanocrystals and two-dimensional nanoplatelets. Nanotechnology, 2019, 30(29): 295601. |
[25] | ZHU W, SHEN J, LI M, et al. Kinetically controlled growth of sub-millimeter 2D Cs2SnI6 nanosheets at the liquid-liquid interface. Small, 2021, 17(4): 2006279. |
[26] |
LUO R, ZHANG S, ZHAO S, et al. Ultrasmall blueshift of near-infrared fluorescence in phase-stable Cs2SnI6 thin films. Physical Review Applied, 2020, 14(1): 014048.
DOI URL |
[27] |
ZHOU P, CHEN H, CHAO Y, et al. Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nature Communications, 2021, 12: 4412.
DOI URL |
[28] |
ULLAH S, ULLAH S, WANG J, et al. Investigation of air-stable Cs2SnI6 films prepared by the modified two-step process for lead-free perovskite solar cells. Semiconductor Science and Technology, 2020, 35: 125027.
DOI URL |
[29] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169-11186.
DOI URL |
[30] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59(3): 1758-1775.
DOI URL |
[31] |
PENG H, YANG Z H, PERDEW J P, et al. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Physical Review X, 2016, 6(4): 041005.
DOI URL |
[32] |
XIAO Z, LEI H, ZHANG X, et al. Ligand-hole in [SnI6] unit and origin of band gap in photovoltaic perovskite variant Cs2SnI6. Bulletin of the Chemical Society of Japan, 2015, 88(9): 1250-1255.
DOI URL |
[33] |
ZHANG S B, NORTHRUP J E. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Physical Review Letters, 1991, 67(17): 2339-2342.
DOI URL |
[34] |
VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: applications to III-nitrides. Journal of Applied Physics, 2004, 95(8): 3851-3879.
DOI URL |
[35] |
CHEN H, DING Y H, YU H T, et al. First-principles investigation of the electronic properties and stabilities of the LaAlO3 (001) and (110) (1 × 1) polar terminations. Journal of Physical Chemistry C, 2015, 119(17): 9364-9374.
DOI URL |
[36] |
HUANG X, PAUDEL T R, DOWBEN P A, et al. Electronic structure and stability of the CH3NH3PbBr3 (001) surface. Physical Review B, 2016, 94(19): 195309.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[3] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[4] | PAN Zesheng, YOU Yaping, ZHENG Ya, CHEN Haijie, WANG Lianjun, JIANG Wan. Stability of Phosphors for White LED Excitable by Violet Light [J]. Journal of Inorganic Materials, 2025, 40(3): 314-322. |
[5] | LÜ Xinyi, XIANG Hengyang, ZENG Haibo. Long-range Ordered Films Boost Efficient Perovskite Quantum Dot Light-emitting Devices [J]. Journal of Inorganic Materials, 2025, 40(1): 111-112. |
[6] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[7] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[8] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[9] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[10] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[11] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[12] | LIU Suolan, LUAN Fuyuan, WU Zihua, SHOU Chunhui, XIE Huaqing, YANG Songwang. In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1397-1403. |
[13] | WANG Yu, XIONG Hao, HUANG Xiaokun, JIANG Linqin, WU Bo, LI Jiansheng, YANG Aijun. Regulation of Low-dose Stannous Iso-octanoate for Two-step Prepared Sn-Pb Alloyed Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1339-1347. |
[14] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[15] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||