 
 Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (7): 724-730.DOI: 10.15541/jim20210631
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													CHENG Cheng( ), LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun(
), LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun( ), WANG Tongmin
), WANG Tongmin
												  
						
						
						
					
				
Received:2021-10-11
															
							
																	Revised:2021-11-19
															
							
															
							
																	Published:2022-07-20
															
							
																	Online:2021-12-02
															
						Contact:
								KANG Huijun, professor. E-mail: kanghuijun@dlut.edu.cnAbout author:CHENG Cheng (1996-), male, Master candidate. E-mail: cc2019@mail.dlut.edu.cn				
													Supported by:CLC Number:
CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites[J]. Journal of Inorganic Materials, 2022, 37(7): 724-730.
 
																													Fig. 3 SEM images of (a) pure In2O3 powder, fracture surface for (1-x)In2O3/xInNbO4 (x=(b) 0, (c) 0.04), surface SEM images for (1-x)In2O3/xInNbO4 (x=0.002 (d), x=0.02 (e), x=0.04 (f)); (g-h) elemental distributions of Nb at high magnification for 0.96In2O3/0.04InNbO4
| (1-x)In2O3/xInNbO4 | ρm/(g·cm-3) | ρth/(g·cm-3) | ρr/% | n/(×1019, cm-3) | μ/(cm2·V-1·s-1) | 
|---|---|---|---|---|---|
| x=0 | 6.969 | 7.120 | 97.9 | 0.46 | 94.26 | 
| x=0.002 | 7.016 | 7.119 | 98.6 | 0.78 | 76.22 | 
| x=0.006 | 6.811 | 7.117 | 95.7 | 5.90 | 38.21 | 
| x=0.01 | 6.658 | 7.116 | 93.6 | 9.80 | 38.43 | 
| x=0.02 | 6.598 | 7.112 | 92.8 | 20.88 | 40.22 | 
| x=0.04 | 6.547 | 7.100 | 92.2 | 45.24 | 39.86 | 
Table 1 Measured densities(ρm), theoretical densities(ρth), relative densities (ρr), carrier concentrations (n) and carrier mobilities (μ) of (1-x)In2O3/xInNbO4 samples at room temperature
| (1-x)In2O3/xInNbO4 | ρm/(g·cm-3) | ρth/(g·cm-3) | ρr/% | n/(×1019, cm-3) | μ/(cm2·V-1·s-1) | 
|---|---|---|---|---|---|
| x=0 | 6.969 | 7.120 | 97.9 | 0.46 | 94.26 | 
| x=0.002 | 7.016 | 7.119 | 98.6 | 0.78 | 76.22 | 
| x=0.006 | 6.811 | 7.117 | 95.7 | 5.90 | 38.21 | 
| x=0.01 | 6.658 | 7.116 | 93.6 | 9.80 | 38.43 | 
| x=0.02 | 6.598 | 7.112 | 92.8 | 20.88 | 40.22 | 
| x=0.04 | 6.547 | 7.100 | 92.2 | 45.24 | 39.86 | 
 
																													Fig. 6 Temperature dependence of (a) electrical conductivities, (b) Seebeck coefficients and (c) power factors of (1-x)In2O3/xInNbO4, In1.76(Zn0.12Ge0.12)O3[33] and In1.88V0.12O3[34]
 
																													Fig. 7 Temperature dependence of (a) total thermal conductivity, (b) electronic thermal conductivity and (c) lattice thermal conductivity of (1-x)In2O3/xInNbO4, In1.76(Zn0.12Ge0.12)O3[33] and In1.88V0.12O3[34]
| [1] | BAKKER F L, SLACHTER A, ADAM J P, et al. Interplay of peltier and seebeck effects in nanoscale nonlocal spin valves. Physical Review Letters, 2010, 105(13): 136601. | 
| [2] | BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008,  321(5895): 1457-1461. DOI URL | 
| [3] | LI J B, WANG J, LI J F, et al. Broadening the temperature range for high thermoelectric performance of bulk polycrystalline strontium titanate by controlling the electronic transport properties. Journal of Materials Chemistry C, 2018,  6(28): 7594-7603. DOI URL | 
| [4] | KANG H J, ZHANG X Y, WANG Y X, et al. Effect of rare-earth variable-valence element Eu doping on thermoelectric property of BiCuSeO. Journal of Inorganic Materials, 2020,  35(9): 1041-1046. DOI URL | 
| [5] | SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008,  7(2): 105-114. DOI URL | 
| [6] | TAN G, ZHAO L D, KANATZIDIS M G. Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 2016,  116(19): 12123-12149. DOI URL | 
| [7] | ROWE D M. CRC Handbook of Thermoelectrics. Boca Raton: CRC, 1995: 407. | 
| [8] | ZHANG C C, WANG X, PENG L M. Thermoelectric transport characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y systems via stepwise addition of dual components. Journal of Inorganic Materials, 2021,  36(9): 936-942. DOI URL | 
| [9] | MEHTA R J, ZHANG Y, KARTHIK C, et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature Materials, 2012,  11(3): 233-240. DOI URL | 
| [10] | BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012,  489(7416): 414-418. DOI URL | 
| [11] | SARAMAT A, SVENSSON G, PALMQVIST A E C, et al. Large thermoelectric figure of merit at high temperature in Czochralski- grown clathrate Ba8Ga16Ge30. Journal of Applied Physics, 2006, 99(2): 023708. | 
| [12] | LAN J L, LIN Y H, LIU Y, et al. High thermoelectric performance of nanostructured In2O3-based ceramics. Journal of the American Ceramic Society, 2012,  95(8): 2465-2469. DOI URL | 
| [13] | KING P D C, VEAL T D, FUCHS F, et al. Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Physical Review B, 2009, 79(20): 205211. | 
| [14] | GUILMEAU E, BERARDAN D, SIMON C, et al. Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at in-site. Journal of Applied Physics, 2009, 106(5): 053715. | 
| [15] | MILLER D R, AKBAR S A, MORRIS P A. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors and Actuators B-Chemical, 2014,  204: 250-272. DOI URL | 
| [16] | HAMBERG I, GRANQVIST C G, BERGGREN K F, et al. Band- gap widening in heavily Sn-doped In2O3. Physical Review B, 1984,  30(6): 3240-3249. DOI URL | 
| [17] | MAREZIO M. Refinement of the crystal structure of In2O3 at two wavelengths. Acta Crystallographica, 1966,  20: 723-728. DOI URL | 
| [18] | DU K, DENG S P, QI N, et al. Ultralow thermal conductivity in In2O3 mediated by porous structures. Microporous and Mesoporous Materials, 2019, 288: 109525. | 
| [19] | LIU Y, XU W, LIU D B, et al. Enhanced thermoelectric properties of Ga-doped In2O3 ceramics via synergistic band gap engineering and phonon suppression. Physical Chemistry Chemical Physics, 2015,  17(17): 11229-11233. DOI URL | 
| [20] | CHENG B, LIN Y H, LAN J L, et al. Preparation of In2O3-Sr2RuErO6 composite ceramics by the spark plasma sintering and their thermoelectric performance. Journal of Materials Science & Technology, 2011, 27(12): 1165-1168. | 
| [21] | GREGORY O J, AMANI M, FRALICK G C. Thermoelectric power factor of In2O3:Pd nanocomposite films. Applied Physics Letters, 2011, 99(1): 013107. | 
| [22] | LÜ J, KAKO T, ZOU Z G, et al. Band structure design and photocatalytic activity of In2O3/N-InNbO4 composite. Applied Physics Letters, 2009, 95(3): 032107. | 
| [23] | WANG J, LI J B, YU H Y, et al. Enhanced thermoelectric performance in n-type SrTiO3/SiGe composite. ACS Applied Materials Interfaces, 2020,  12(2): 2687-2694. DOI URL | 
| [24] | CHEN Q F, WANG X X, WU Z S, et al. Recent advances in SnSe- based thermoelectric materials. Chinese Journal of Rare Metals, 2020, 44(12): 1316-1324. | 
| [25] | YANG Y X, WU Y H, ZHANG Q, et al. Enhanced thermoelectric performance of Bi2Se3/TiO2 composite. Rare Metals, 2020,  39(8): 887-894. DOI URL | 
| [26] | ZHOU M, ZU X T, SUN K, et al. Enhanced photocatalytic hydrogen generation of nano-sized mesoporous InNbO4 crystals synthesized via a polyacrylamide gel route. Chemical Engineering Journal, 2017,  313: 99-108. DOI URL | 
| [27] | BADRINARAYANAN S, MANDALE A B. Oxygen interaction with ternary chalcogenide: an electron spectroscopy for chemical analysis study of AgInTe2. Journal of Materials Research, 1995,  10(5): 1091-1098. DOI URL | 
| [28] | CHATTERJI D, VEST R W. Thermodynamic properties of system indium-oxygen. Journal of the American Ceramic Society, 1972,  55(11): 575-578. DOI URL | 
| [29] | ZHANG B, BAO N, WANG T, et al. High-performance room temperature NO2 gas sensor based on visible light irradiated In2O3 nanowires. Journal of Alloys and Compounds, 2021, 867: 159076. | 
| [30] | ZHANG B, CHENG M, LIU G, et al. Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. Sensors and Actuators B: Chemical, 2018,  263: 387-399. DOI URL | 
| [31] | LI J B, WANG Y X, YANG X, et al. Processing bulk insulating CaTiO3 into a high-performance thermoelectric material. Chemical Engineering Journal, 2022, 428: 131121. | 
| [32] | YANG D, SU X, LI J, et al. Blocking ion migration stabilizes the high thermoelectric performance in Cu2Se composites. Advanced Materials, 2020, 32(40): 2003730. | 
| [33] | AHMAD A, HUSSAIN M, LIN Y H. Synergistically improving the thermoelectric performance of In2O3 via a dual-doping and nanostructuring approach. Materials Research Express, 2019, 6(10): 105507. | 
| [34] | AHMAD A, HUSSAIN M, ZHOU Z F, et al. Thermoelectric performance enhancement of vanadium doped n-type In2O3 ceramics via carrier engineering and phonon suppression. ACS Applied Energy Materials, 2020,  3(2): 1552-1558. DOI URL | 
| [35] | CHENG B, FANG H, LAN J L, et al. Thermoelectric performance of Zn and Ge co-doped In2O3 fine-grained ceramics by the spark plasma sintering. Journal of the American Ceramic Society, 2011,  94(8): 2279-2281. DOI URL | 
| [36] | LIU Y, LIN Y H, LAN J L, et al. Effect of transition-metal cobalt doping on the thermoelectric performance of In2O3 ceramics. Journal of the American Ceramic Society, 2010,  93(10): 2938-2941. DOI URL | 
| [37] | BERARDAN D, GUILMEAU E, MAIGNAN A, et al. In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Communications, 2008,  146(1/2): 97-101. DOI URL | 
| [38] | LIU Y, LIN Y H, XU W, et al. High-temperature transport property of In2-xCexO3 (0≤x≤0.10) fine grained ceramics. Journal of the American Ceramic Society, 2012,  95(8): 2568-2572. DOI URL | 
| [39] | MORELLI D T, HEREMANS J P, SLACK G A. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Physical Review B, 2002, 66(19): 195304. | 
| [1] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. | 
| [2] | KANG Huijun,ZHANG Xiaoying,WANG Yanxia,LI Jianbo,YANG Xiong,LIU Daquan,YANG Zerong,WANG Tongmin. Effect of Rare-earth Variable-valence Element Eu doping on Thermoelectric Property of BiCuSeO [J]. Journal of Inorganic Materials, 2020, 35(9): 1041-1046. | 
| [3] | QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties [J]. Journal of Inorganic Materials, 2020, 35(8): 916-922. | 
| [4] | LI Xin, XI Li-Li, YANG Jiong. First Principles High-throughput Research on Thermoelectric Materials: a Review [J]. Journal of Inorganic Materials, 2019, 34(3): 236-246. | 
| [5] | LUO Jun, HE Shi-Yang, LI Zhi-Li, LI Yong-Bo, WANG Feng, ZHANG Ji-Ye. Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 247-259. | 
| [6] | SHEN Jia-Jun, FANG Teng, FU Tie-Zheng, XIN Jia-Zhan, ZHAO Xin-Bing, ZHU Tie-Jun. Lattice Thermal Conductivity in Thermoelectric Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 260-268. | 
| [7] | YU Guan-Ting, XIN Jia-Zhan, ZHU Tie-Jun, ZHAO Xin-Bing. Thermoelectric Property of Zn-Sb Doped Mg2(Si,Sn) Alloys [J]. Journal of Inorganic Materials, 2019, 34(3): 310-314. | 
| [8] | LI Xiao-Yu, ZHANG Li, TANG Xin-Feng, ZHANG Qing-Jie. Preparation and Characterization of γ-NaxCoO2 by Sodium Polyacrylate Gel Method [J]. Journal of Inorganic Materials, 2017, 32(6): 603-608. | 
| [9] | ZONG Peng-An, CHEN Li-Dong. Preparation and Mechanical Properties of Ce0.85Fe3CoSb12/rGO Thermoelectric Nanocomposite [J]. Journal of Inorganic Materials, 2017, 32(1): 33-38. | 
| [10] | XING Zhi-Bo, LI Jing-Feng. Powder Metallurgic Synthesis of Mid-temperature Lead-free AgSn18SbTe20 Thermoelectric Materials and Processing Influence on Thermoelectric Performance [J]. Journal of Inorganic Materials, 2015, 30(8): 872-876. | 
| [11] | HE Xia, LIU Hai-Rui, DONG Hai-Liang, LIANG Jian, ZHANG Hua, XU Bing-She. Synthesis and Photocatalytic Properties of ZnO/In2O3 Heteronanostructures [J]. Journal of Inorganic Materials, 2014, 29(3): 264-268. | 
| [12] | HAN Zhi-Ming, ZHANG Xin, LU Qing-Mei, ZHANG Jiu-Xing, ZHANG Fei-Peng. Preparation and Thermoelectric Properties of (Mg2Si1-xSbx)0.4-(Mg2Sn)0.6 Alloys [J]. Journal of Inorganic Materials, 2012, 27(8): 822-826. | 
| [13] | MA Bing, CHENG Su-Dan, ZHAO Wen-Yu, ZHANG Qing-Jie. Preparation and Thermoelectric Transport Properties of In-doping β-Zn4Sb3 Bulk Thermoelectric Materials [J]. Journal of Inorganic Materials, 2010, 25(6): 598-602. | 
| [14] | XU Jing-Jing, DU Bao-Li, ZHANG Wen-Hao, TANG Xin-Feng. Sonochemicial Synthesis of AgSbTe2 Thermoelectric Compounds [J]. Journal of Inorganic Materials, 2010, 25(6): 593-597. | 
| [15] | SHEN Jun-Jie, ZHU Tie-Jun, YU Cui, YANG Sheng-Hui, ZHAO Xin-Bing. Influence of Ag2Te Doping on the Thermoelectric Properties of p-type Bi0.5Sb1.5Te3 Bulk Alloys [J]. Journal of Inorganic Materials, 2010, 25(6): 583-587. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||