Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 596-602.DOI: 10.15541/jim20210437
Special Issue: 【信息功能】介电、铁电、压电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHAO Yuyao1(), OUYANG Jun1,2(
)
Received:
2021-07-13
Revised:
2021-08-25
Published:
2022-06-20
Online:
2021-08-20
Contact:
OUYANG Jun, male, professor. E-mail: ouyangjun@qlu.edu.cnAbout author:
ZHAO Yuyao (1994–), male, PhD candidate. E-mail: zhaoyuyao920606@163.com
Supported by:
CLC Number:
ZHAO Yuyao, OUYANG Jun. Columnar Nanograined BaTiO3 Ferroelectric Thin Films Integrated on Si with a Sizable Dielectric Tunability[J]. Journal of Inorganic Materials, 2022, 37(6): 596-602.
Fig. 1 Phase structure analyses of BaTiO3 films (a) XRD patterns of BaTiO3 films deposited at different temperatures; (b) Magnified area near BaTiO3(002)/LaNiO3(200) peaks from (a) with inset showing XRD patterns over 20°-50° at a low scanning rate (1 (°)/min)
Fig. 2 Nanostructures of BaTiO3 films deposited at (a-c) 450 ℃ and (d-f) 500 ℃ (a-c) 450 ℃-deposited BaTiO3 film: (a) Low magnification cross-sectional TEM image; (b) Low-resolution TEM image of the interface between LaNiO3 and BaTiO3; (c) High-resolution TEM image of the interface between LaNiO3 and BaTiO3 with the yellow dashed line showing the interface of LaNiO3/BaTiO3, while the white dashed lines showing a conformally grown BaTiO3 nanograin from its interface with LaNiO3 (d-f) 500 ℃-deposited BaTiO3 film: (d) Low magnification cross-sectional TEM image; (e) Low-resolution TEM image of the interface between LaNiO3 and BaTiO3; (f) High-resolution TEM image of the interface between LaNiO3 and BaTiO3 with the yellow dashed line showing the interface of LaNiO3/BaTiO3
Fig. 3 Electrical performance of BaTiO3 films (a) Standard P-E hysteresis loops; (b) The maximum polarization (Pm) and self-polarization (PS), as well as Pm-Ps of the BaTiO3 films as functions of the applied electric field; (c) Small-field (Vp-p=1 V) dielectric constant and loss tangent as functions of the measuring frequency (εr-f and tanδ-f); (d) Leakage current density vs the applied DC electric field
Fig. 4 Dielectric tunability performance of the BaTiO3 films Dielectric constant (εr) as a function of E from (a) P-E and (b) C-V test results with loss tangent as a function of E; (c) Dielectric tunability and figure of merit as functions of E with data points were taken from (b); (d) Comparison with other leading ferroelectric films in dielectric tunability and deposition temperature
[1] |
TAGANTSEV A K, SHERMAN V O, ASTAFIEV K F, et al. Ferroelectric materials for microwave tunable applications. Journal of Electroceramics, 2003, 11(1/2): 5-66.
DOI URL |
[2] |
MIN H K, KIM T Y, SEUNG E M, et al. Microwave properties of Mn doped (Ba1-x, Srx)TiO3thin films for tunable phase shifter. Integrated FerroeLectrics, 2004, 66(1): 283-289.
DOI URL |
[3] | HARIBABU P, MAHESH P, HWANG G T, et al. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Advanced Functional Materials, 2018, 28(42): 1803665. |
[4] |
NIU G, YIN S, SAINT-GIRONS G, et al. Epitaxy of BaTiO3 thin film on Si (001) using a SrTiO3 buffer layer for non-volatile memory application. Microelectronic Engineering, 2011, 88(7): 1232-1235.
DOI URL |
[5] |
GAO T, LIAO J J, WANG J S, et al. Highly oriented BaTiO3 film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting. Journal of Materials Chemistry A, 2015, 3(18): 9965-9971.
DOI URL |
[6] |
ZHANG W, CHENG H B, YANG Q, et al. Crystallographic orientation dependent dielectric properties of epitaxial BaTiO3 thin films. Ceramics International, 2016, 42(3): 4400-4405.
DOI URL |
[7] | ZHAO J Y, CHEN H W, WEI M, et al. Effects of Bi2O3, Sm2O3 content on the structure, dielectric properties and dielectric tunability of BaTiO3 ceramics. Journal of Materials Science, 2019, 30(21): 19279-19288. |
[8] |
ZHU C Q, WANG X H, ZHAO Q C, et al. Effects of grain size and temperature on the energy storage and dielectric tunability of non-reducible BaTiO3-based ceramics. Journal of the European Ceramic Society, 2019, 39(4): 1142-1148.
DOI URL |
[9] |
GAO L N, ZHAO J W, YAO X. Low dielectric loss and enhanced tunability of Ba(Zr0.3Ti0.7)O3-based thin film by Sol-Gel method. Ceramics International, 2008, 34(4): 1023-1026.
DOI URL |
[10] |
ZHANG H F, GIDDEN H, SAUNDERS T G, et al. High tunability and low loss in layered perovskite dielectrics through intrinsic elimination of oxygen vacancies. Chemistry of Materials, 2020, 32(23): 10120-10129.
DOI URL |
[11] |
SREENIVAS P, PRADHAN D, PEREZ W, et al. Structure, dielectric tunability, thermal stability and diffuse phase transition behavior of lead free BZT-BCT ceramic capacitors. Journal of Physics and Chemistry of Solids, 2013, 74(3): 466-475.
DOI URL |
[12] |
PENG B L, ZHANG Q, LI X, et al. High dielectric tunability, electrostriction strain and electrocaloric strength at a tricritical point of tetragonal, rhombohedral and pseudocubic phases. Journal of Alloys and Compounds, 2015, 646(15): 597-602.
DOI URL |
[13] | SANGLE A L, LEE O J, KURSUMOVIC A, et al. Very high commutation quality factor and dielectric tunability in nanocomposite SrTiO3 thin films with Tc enhanced to >300 ℃. Nanoscale, 2018, 10(7): 2460-3468. |
[14] |
HAO L X, YANG Y L, HUAN Y, et al. Achieving a high dielectric tunability in strain-engineered tetragonal K0.5Na0.5NbO3 films. npj Computational Materials, 2021, 7(1): 62.
DOI URL |
[15] |
CHEN H W, YANG C R, FU C L, et al. The size effect of Ba0.6Sr0.4TiO3 thin films on the ferroelectric properties. Applied Surface Science, 2006, 252(12): 4171-4177.
DOI URL |
[16] |
GAO Y Q, YUAN M L, SUN X, et al. In situ preparation of high quality BaTiO3 dielectric films on Si at 350-500 ℃. Journal of Materials Science: Materials in Electronics, 2016, 28(1): 337-343.
DOI URL |
[17] |
ZHAO Y Y, OUYANG J, WANG K, et al. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy Storage Materials, 2021, 39: 81-88.
DOI URL |
[18] |
RAYMOND M V, SMYTH D M. Defects and charge transport in perovskite ferroelectrics. Journal of Physics and Chemistry of Solids, 1996, 57(10): 1507-1511.
DOI URL |
[19] |
CHOI K J, BIEGALSKI M, LI Y L, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 2004, 306(5698): 1005-1009.
DOI URL |
[20] | WANG K, ZHANG Y, WANG S X, et al. High energy performance ferroelectric (Ba,Sr)(Zr,Ti)O3 film capacitors integrated on Si at 400 ℃. ACS Applied Materials& Interface, 2021, 13: 22717-22727. |
[21] | MILTON O. Materials Science of Thin Films. Academic Press, 2002. |
[22] |
CAI Z M, WANG X H, HONG W, et al. Grain-size- dependent dielectric properties in nanograin ferroelectrics. Journal of the American Ceramic Society, 2018, 101(12): 5487-5496.
DOI URL |
[23] | CHENG J G, MENG X J, TANG J, et al. Effects of individual layer thickness on the structure and electrical properties of Sol-Gel- derived Ba0.8Sr0.2TiO3 thin films. Journal of the Ceramic Society, 2000, 83(10): 2616-2618. |
[24] |
LIU S W, WEAVER J, YUAN Z, et al. Ferroelectric (Pb,Sr)TiO3 epitaxial thin films on (001)MgO for room temperature high- frequency tunable microwave elements. Applied Physics Letters, 2005, 87(14): 142905.
DOI URL |
[25] |
WU Z, ZHOU J, CHEN W, et al. Improvement in temperature dependence and dielectric tenability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer. Applied Surface Science, 2016, 388: 579-583.
DOI URL |
[26] |
DONG H T, JIAN J, LI H F, et al. Improved dielectric tunability of PZT/BST multilayer thin films on Ti substrates. Journal of Alloys and Compounds, 2017, 725: 54-59.
DOI URL |
[27] |
ZHENG Z, YAO Y Y, WENG W J, et al. High dielectric tunability of (100) oriented PbxSr1-xTiO3 thin film coordinately controlled by dipole activation and phase anisotropy. Journal of Applied Physics, 2011, 110(12): 124107.
DOI URL |
[28] |
TAKEDA K, MURAISHI T, HOSHINA T, et al. Dielectric tunability and electro-optic effect of Ba0.5Sr0.5TiO3 thin films. Journal of Applied Physics, 2010, 107(7): 074105.
DOI URL |
[29] |
GAO L B, JIANG S W, LI R G. Effect of sputtering pressure on structure and dielectric properties of bismuth magnesium niobate thin films prepared by RF magnetron sputtering. Thin Solid Films, 2016, 603: 391-394.
DOI URL |
[30] |
ZHAI J W, YAO X, ZHANG L Y, et al. Dielectric nonlinear characteristics of BaZr0.35Ti0.65O3 thin films grown by a Sol-Gel process. Applied Physics Letters, 2004, 84(16): 3136-3138.
DOI URL |
[1] | WANG Hao, LIU Xuechao, ZHENG Zhong, PAN Xiuhong, XU Jintao, ZHU Xinfeng, CHEN Kun, DENG Weijie, TANG Meibo, GUO Hui, GAO Pan. Performance of Lateral 4H-SiC Photoconductive Semiconductor Switches by Extrinsic Backside Trigger [J]. Journal of Inorganic Materials, 2024, 39(9): 1070-1076. |
[2] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[3] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[4] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[5] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[6] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[7] | XU Hao, QIAN Wei, HUA Yinqun, YE Yunxia, DAI Fengze, CAI Jie. Effects of Micro Texture Processed by Picosecond Laser on Hydrophobicity of Silicon Carbide [J]. Journal of Inorganic Materials, 2023, 38(8): 923-930. |
[8] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[9] | GU Xuesu, YIN Jie, WANG Kanglong, CUI Chong, MEI Hui, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Effect of Particle Grading on Properties of Silicon Carbide Ceramics by Binder Jetting Printing [J]. Journal of Inorganic Materials, 2023, 38(12): 1373-1378. |
[10] | KANG Wenshuo, GUO Xiaojie, ZOU Kai, ZHAO Xiangyong, ZHOU Zhiyong, LIANG Ruihong. Enhanced Resistivity Induced by the Second Phase with Layered Structure in BiFeO3-BaTiO3 Ceramics [J]. Journal of Inorganic Materials, 2023, 38(12): 1420-1426. |
[11] | FU Shi, YANG Zengchao, LI Jiangtao. Progress of High Strength and High Thermal Conductivity Si3N4 Ceramics for Power Module Packaging [J]. Journal of Inorganic Materials, 2023, 38(10): 1117-1132. |
[12] | LI Honghua, DONG Wanru, WANG Liang, YANG Zengchao, LI Jiangtao. Consistency of Silicon Nitride Powders Produced by Combustion Synthesis: Evaluation and Application [J]. Journal of Inorganic Materials, 2023, 38(10): 1169-1175. |
[13] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. |
[14] | FU Shi, YANG Zengchao, LI Honghua, WANG Liang, LI Jiangtao. Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives [J]. Journal of Inorganic Materials, 2022, 37(9): 947-953. |
[15] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||