Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (12): 1420-1426.DOI: 10.15541/jim20230167
Special Issue: 【信息功能】介电、铁电、压电材料(202409); 【信息功能】纪念殷之文先生诞辰105周年虚拟学术专辑
• RESEARCH ARTICLE • Previous Articles Next Articles
KANG Wenshuo1,2(), GUO Xiaojie1,2, ZOU Kai1,2, ZHAO Xiangyong3, ZHOU Zhiyong1, LIANG Ruihong1(
)
Received:
2023-04-06
Revised:
2023-05-10
Published:
2023-09-12
Online:
2023-09-12
Contact:
LIANG Ruihong, professor. E-mail: liangruihong@mail.sic.ac.cnAbout author:
KANG Wenshuo (1994-), male, PhD candidate. E-mail: kangwenshuo20@mails.ucas.ac.cn
Supported by:
CLC Number:
KANG Wenshuo, GUO Xiaojie, ZOU Kai, ZHAO Xiangyong, ZHOU Zhiyong, LIANG Ruihong. Enhanced Resistivity Induced by the Second Phase with Layered Structure in BiFeO3-BaTiO3 Ceramics[J]. Journal of Inorganic Materials, 2023, 38(12): 1420-1426.
Fig. 2 Backscattered electron images of the cross-section for (1−x)BF-xBT ceramics (a-d), polished surface image for x=0.10 composition (e), and EDS mapping of Bi (f) and Fe (g)
Fig. 3 DC resistivity versus temperature of (1−x)BF-xBT ceramics (a), Nyquist plots at 300 ℃ (b), and grain boundary resistivity obtained from fitting Cole-Cole plots of x=0.10 composition (c)
Fig. 5 TEM image (a), selected-area electron diffraction (b) and high-resolution TEM image (c) at [111] of second phase, and high-angle annular dark-field images in [111] zone axis (d, e) with illustration in (e) showing intensity plot of atoms in green box
Fig. 6 Resistivity simulation of the BF-BT composite ceramic at 300 ℃ (a), schematic diagram describing carrier migration (b), and Schottky barrier model (c)
Fig. 7 Backscatter morphologies of the polished 0.70BF-0.30BT pure component sample (a) and the sample modified with the second phase (b), resistivities of two samples versus temperature (c), and summary results of the resistivities of 0.70BF-0.30BT at 300 ℃ reported in the literatures (d)
[1] |
YAO Z H, XU C B, LIU H X, et al. Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO3- BaTiO3 high temperature piezoceramics. J. Mater. Sci-Mater. El., 2014, 25(11): 4975.
DOI URL |
[2] |
LEONTSEV S O, EITEL R E. Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics. J. Am. Ceram. Soc., 2009, 92(12): 2957.
DOI URL |
[3] |
WAN Y, LI Y, LI Q, et al. Microstructure, ferroelectric, piezoelectric, and ferromagnetic properties of Sc-modified BiFeO3- BaTiO3 multiferroic ceramics with MnO2 addition. J. Am. Ceram. Soc., 2014, 97(6): 1809.
DOI URL |
[4] |
LEE M H, KIM D J, PARK J S, et al. High-performance lead- free piezoceramics with high curie temperatures. Adv. Mater., 2015, 27(43): 6976.
DOI URL |
[5] | ICHIRO FUJII S W. Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3piezoelectric ceramics. J. Appl. Phys., 2017, 122: 164105. |
[6] |
ZHANG S, YU F. Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc., 2011, 94(10): 3153.
DOI URL |
[7] | SHI Y, DONG X, ZHAO K, et al. Potential high-temperature piezoelectric ceramics with remarkable performances enhanced by the second-order Jahn-Teller effect. ACS Appl. Mater. & Interf., 2021, 13(12): 14385. |
[8] |
KE Q, LOU X, WANG Y, et al. Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3ferroelectric thin films. Phys. Rev. B, 2010, 82(2): 024102.
DOI URL |
[9] |
VERWEIJ H. Thermodynamics and transport of ionic and electric defects in crystalline oxides. J. Am. Ceram. Soc., 1997, 80(9): 2175.
DOI URL |
[10] | ZHENG T, WU J, XIAO D, et al. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. in Mater. Sci., 2018, 98: 552. |
[11] | WANG T, JIN L, TIAN Y, et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett., 2014, 137: 79. |
[12] |
QI X D, DHO J, TOMOV R, et al. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett., 2005, 86(6): 062903.
DOI URL |
[13] |
WEFRING E T, EINARSRUD M A, GRANDE T. Electrical conductivity and thermopower of (1-x)BiFeO3-xBi0.5K0.5TiO3(x = 0.1, 0.2) ceramics near the ferroelectric to paraelectric phase transition. Phys. Chem. Chem. Phys.: PCCP, 2015, 17(14): 9420.
DOI URL |
[14] |
ZHU L F, SONG A, ZHANG B P, et al. Boosting energy storage performance of BiFeO3-based multilayer capacitors via enhancing ionic bonding and relaxor behavior. J. Mater. Chem. A, 2022, 10(13): 7382..
DOI URL |
[15] | ZENG F, FAN G, HAO M, et al. Conductive property of BiFeO3- BaTiO3 ferroelectric ceramics with high Curie temperature. J. Alloys and Compd., 2020, 831: 154853. |
[16] |
VALANT M. Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem. Mater., 2007, 19(22): 5431.
DOI URL |
[17] |
SOSNOWSKA I, NEUMAIER T P, STEICHELE E. Spiral magnetic ordering in bismuth ferrite. J. Phys. C: Solid State Phys., 1982, 15(23): 4835.
DOI URL |
[18] |
PALAI R, KATIYAR R S, SCHMID H, et al. β phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B, 2008, 77(1): 014110.
DOI URL |
[19] |
GHEORGHIU F P, IANCULESCU A, POSTOLACHE P, et al. Preparation and properties of (1-x)BiFeO3-xBaTiO3multiferroic ceramics. J.. Alloys and Compd., 2010, 506(2): 862.
DOI URL |
[20] |
WANG G, LI J, ZHANG X, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energ. Environ. Sci., 2019, 12(2): 582.
DOI URL |
[21] |
MORRISON F D, SINCLAIR D C, WEST A R. Characterization of lanthanum-doped barium titanate ceramics using impedance spectroscopy. J. Am. Ceram. Soc., 2001, 84(3): 531.
DOI URL |
[22] |
SUNDARAKANNAN B, KAKIMOTO K, OHSATO H. Frequency and temperature dependent dielectric and conductivity behavior of KNbO3 ceramics. J. Appl. Phys., 2003, 94(8): 5182.
DOI URL |
[23] |
IRVINE J T S. Electroceramics characterization by impedance spectroscopy. Adv. Mater., 1990, 2(3): 132.
DOI URL |
[24] |
JEBARI H, TAHIRI N, BOUJNAH M, et al. Structural, optical, dielectric, and magnetic properties of iron-sillenite Bi25FeO40. Appl. Phys. A, 2022, 128(9): 842.
DOI |
[25] | JIANG T, WANG Y, GUO Z, et al. Bi25FeO40/Bi2O2CO3 piezoelectric catalyst with built-in electric fields that was prepared via photochemical self-etching of Bi25FeO40for 4-chlorophenol degradation. J. Cleaner Prod., 2022, 341: 130908. |
[26] |
SEI K K, MASARU M, HIROAKI Y. Electrical anisotropy and plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal. Mater. Res. Bull., 1996, 31(1): 121.
DOI URL |
[27] |
AUCIELLO O, KRAUSS A R, IM J, et al. Studies of film growth processes and surface structural characterization of ferroelectric memory-compatible SrBi2Ta2O9 layered perovskites via in situ, real-time ion-beam analysis. Appl. Phys. Lett., 1996, 69(18): 2671.
DOI URL |
[28] |
WASER R. Grain boundaries in dielectric and mixed-conducting ceramics. Acta Mater., 2000, 48(4): 797.
DOI URL |
[29] |
YOON S H, RANDALL C A, HUR K H. Influence of grain size on impedance spectra and resistance degradation behavior in acceptor (Mg)-doped BaTiO3 ceramics. J. Am. Ceram. Soc., 2009, 92(12): 2944.
DOI URL |
[30] |
REISS G, VANCEA J, HOFFMANN H. Grain-boundary resistance in polycrystalline metals. Phys. Rev. Lett., 1986, 56(19): 2100.
PMID |
[31] |
HAILE S M, WEST D L, CAMPBELL J. The role of microstructure and processing on the proton conducting properties of gadolinium- doped barium cerate. J. Mater. Res., 1998, 13(6): 1576.
DOI URL |
[32] | LUO T. Maxwell-Wagner Polarization Characteristics in BaTiO3 PVDF Nanocomposites. High Voltage Engineering, 2019. |
[33] |
ZHANG C, CHEN Y, LI X, et al. Effect of LiF addition on sintering behavior and dielectric breakdown mechanism of MgO-based microwave dielectric ceramics. J. Materiomics, 2021, 7(3): 478.
DOI URL |
[34] |
ABRANTES J C C. Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics. J. Eur. Ceram. Soc., 2000, 20(10): 1603.
DOI URL |
[35] |
BENNETT N S, BYRNE D, COWLEY A. Enhanced Seebeck coefficient in silicon nanowires containing dislocations. Appl. Phys. Lett., 2015, 107(1): 013903.
DOI URL |
[36] |
SINGH H, KUMAR A, YADAV K L. Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3-BaTiO3ceramics. Mater. Sci. and Engin.: B, 2011, 176(7): 540.
DOI URL |
[37] |
LI Q, WEI J, TU T, et al. Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BiFeO3-BaTiO3ceramics. J. Am. Ceram. Soc., 2017, 100(12): 5573.
DOI URL |
[38] |
WANG L, LIANG R, ZHOU Z, et al. Electrical conduction mechanisms and effect of atmosphere annealing on the electrical properties of BiFeO3-BaTiO3 ceramics. J. Eur. Ceram. Soc., 2019, 39(15): 4727.
DOI URL |
[39] |
MURAKAMI S, AHMED N T A F, WANG D, et al. Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J. Eur. Ceram. Soc., 2018, 38(12): 4220.
DOI URL |
[40] |
MURAKAMI S, WANG D, MOSTAED A, et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J. Am. Ceram. Soc., 2018, 101(12): 5428.
DOI URL |
[1] | HU Zhongliang, FU Yuntian, JIANG Meng, WANG Lianjun, JIANG Wan. Thermal Stability of Nb/Mg3SbBi Interface [J]. Journal of Inorganic Materials, 2023, 38(8): 931-937. |
[2] | SU Maoxin, LI Xinchen, XIONG Kainan, WANG Sheng, CHEN Yunlin, TU Xiaoniu, SHI Erwei. Characterization of High Temperature Resistivity and Full Matrix Material Coefficient of LGT Crystals [J]. Journal of Inorganic Materials, 2023, 38(11): 1364-1370. |
[3] | YANG Yanguo, REN Haishen, HE Daihua, LIN Huixing. Effect of Cation Field Strength on Structure and High-temperature Properties of BaO-SiO2-Ln2O3 Glass-ceramic [J]. Journal of Inorganic Materials, 2023, 38(10): 1207-1215. |
[4] | WANG Xu, GU Ming, LIAO Jincheng, SONG Qingfeng, SHI Xun, BAI Shengqiang, CHEN Lidong. High Temperature Interfacial Stability of Fe/Bi0.5Sb1.5Te3 Thermoelectric Elements [J]. Journal of Inorganic Materials, 2021, 36(2): 197-202. |
[5] | ZHAO Zhankui, LI Tao, LU Shuhan, WANG Minggang, ZHANG Jingjing, CHENG Daowen, WU Chen, CHI Yue, WANG Hongli. Magnetic Properties and Resistivity of Soft Magnetic Composites Regulated by SPS Enhanced Interface Reaction Mechanism [J]. Journal of Inorganic Materials, 2020, 35(11): 1223-1226. |
[6] | ZHANG Qi-Hao, LIAO Jin-Cheng, TANG Yun-Shan, GU Ming, LIU Rui-Heng, BAI Sheng-Qiang, CHEN Li-Dong. Interface Stability of Skutterudite Thermoelectric Materials/Ti88Al12 [J]. Journal of Inorganic Materials, 2018, 33(8): 889-894. |
[7] | PENG Xu, ZHU De-Gui, LI Yang-Xu, ZHOU Jia-Min, LV Zhen, GUO Peng-Chao. Fabrication and Property of AlN-BN Composites by Hot Isostatic Pressing [J]. Journal of Inorganic Materials, 2016, 31(5): 535-541. |
[8] | LENG Sen-Lin, JIA Fei-Hu, ZHONG Zhi-Kun, YANG Qin-Fang, LI Guo-Rong, ZHENG Liao-Ying. Fabrication of High Tc BaTiO3-(Bi0.5Na0.5)TiO3 Lead-free Positive Temperature Coefficient of Resistivity Ceramics [J]. Journal of Inorganic Materials, 2015, 30(6): 576-580. |
[9] | TANG Yun-Shan, BAI Sheng-Qiang, REN Du-Di, LIAO Jin-Cheng, ZHANG Lan-Ting, CHEN Li-Dong. Interface Structure and Electrical Property of Yb0.3Co4Sb12/Mo-Cu Element Prepared by Welding Using Ag-Cu-Zn Solder [J]. Journal of Inorganic Materials, 2015, 30(3): 256-260. |
[10] | XIONG Xiao-Qing, YUAN Guan-Ming, LI Xuan-Ke, DONG Zhi-Jun, ZHANG Zhong-Wei, WANG Jun-Shan. Preparation and Characterization of Ribbon-shaped Mesophase Pitch-based Carbon Fibers with Different Crystal Orientations [J]. Journal of Inorganic Materials, 2014, 29(11): 1186-1192. |
[11] | LI Yong, XU Xie-Wen, YANG Xian-Feng, XIE Zhi-Peng. Preparation of Antistatic Ceramics Employing Fe-infiltration in Sintered Zirconia Body [J]. Journal of Inorganic Materials, 2014, 29(10): 1099-1104. |
[12] | WANG De-Yin, SONG Yong-Cai, JIAN Ke. Effect of Composition and Structure on the Specific Resistivity of Continuous Silicon Carbide Fibers [J]. Journal of Inorganic Materials, 2012, 27(2): 162-168. |
[13] | DU Yu-Cheng, YAN Jing, MENG Qi, LI Yang, DAI Hong-Xing. Fabrication and Characterization of Antimony-doped Tin Oxide Coating Diatomite Conductive Material with Microporous Structure [J]. Journal of Inorganic Materials, 2011, 26(10): 1031-1036. |
[14] | JIANG Xiao-Na,LAN Zhong-Wen,YU Zhong,Zhuang Ya-Ming,LIU Pei-Yuan. Effects of Mn3O4 on Magnetic Property, Microstructure and Resistivity of LiZn Ferrites [J]. Journal of Inorganic Materials, 2010, 25(1): 77-82. |
[15] | GU Da-Guo,LI Guo-Rong,ZHENG Liao-Ying,ZENG Jiang-Tao,DING Ai-Li,YIN Qing-Rui. Electrical Properties of Mn-modified CaBi4Ti4O15 Piezoelectrics for High Temperature Application [J]. Journal of Inorganic Materials, 2008, 23(3): 626-630. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1186
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 297
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||