Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (10): 1059-1066.DOI: 10.15541/jim20210013
• RESEARCH ARTICLE • Previous Articles Next Articles
FAN Wenqi1(), SONG Xuemei2, HUANG Yiling2, CHANG Chengkang1()
Received:
2021-01-08
Revised:
2021-02-01
Published:
2021-10-20
Online:
2021-03-15
Contact:
CHANG Chengkang, professor. E-mail: ckchang@sit.edu.cn
About author:
FAN Wenqi(1992-), male, Master candidate. E-mail: 1900706242@qq.om
Supported by:
CLC Number:
FAN Wenqi, SONG Xuemei, HUANG Yiling, CHANG Chengkang. Structure Change and Phase Transition Distribution of YSZ Coating Caused by CMAS Corrosion[J]. Journal of Inorganic Materials, 2021, 36(10): 1059-1066.
XRF | CaO | MgO | AlO1.5 | SiO2 |
---|---|---|---|---|
CMAS | 23 | 14.02 | 13.1 | 49.8 |
Table 1 XRF chemical element molar percent composition of Ca22Mg19Al14Si45 powder/%
XRF | CaO | MgO | AlO1.5 | SiO2 |
---|---|---|---|---|
CMAS | 23 | 14.02 | 13.1 | 49.8 |
Fig. 2 (a) Secondary electron morphology of the natural section, (b) backscattered morphology of the polished cross section, and (c) enlarged backscattered image of red frame area in (b) of the sprayed YSZ coating
Fig. 4 (a) Cross-sectional backscatter SEM image of YSZ coating after 4 h corrosion by high-temperature CMAS; (b-e) EDS element mappings of frame (1-4), respectively
Fig. 5 Secondary electron images of cross-sections of the four different depth regions A, B, C, and D in the high-temperature CMAS corroded YSZ coating
Fig. 6 (a) Local backscattering morphology of cross-section of the YSZ coating in the high temperature CMAS corroded state, (b) enlarged image of the red box 1 in (a), and (c) secondary electron magnified image of yellow dashed box area in (b), (d) magnified image of the red box 2 area in (a), (e) backscattering morphology of middle part of the high-temperature CMAS corroded YSZ coating, and (f) backscattering morphology of bottom of cross-section of the high temperature CMAS corroded YSZ coating
EDS/wt% | Ca | Mg | Al | Si | O | Y | Zr |
---|---|---|---|---|---|---|---|
1 | 11.92 | 7.64 | 5.96 | 23.31 | 43.81 | 5.05 | 2.31 |
2 | 11.01 | 7.08 | 5.60 | 23.43 | 44.43 | 5.70 | 2.76 |
3 | 10.93 | 7.96 | 6.12 | 23.51 | 44.03 | 5.18 | 2.26 |
4 | 11.29 | 7.15 | 5.73 | 23.13 | 43.47 | 5.19 | 5.02 |
5 | 11.27 | 7.04 | 5.64 | 22.74 | 43.19 | 5.09 | 5.02 |
6 | 0.65 | 0.41 | 0 | 0 | 25.84 | 4.01 | 69.09 |
7 | 2.19 | 1.34 | 0.95 | 3.74 | 28.71 | 3.46 | 59.61 |
8 | 2.59 | 1.92 | 1.30 | 4.92 | 29.66 | 3.70 | 55.92 |
Table 2 EDS analyses of points 1-8 in Fig. 6(b, c)
EDS/wt% | Ca | Mg | Al | Si | O | Y | Zr |
---|---|---|---|---|---|---|---|
1 | 11.92 | 7.64 | 5.96 | 23.31 | 43.81 | 5.05 | 2.31 |
2 | 11.01 | 7.08 | 5.60 | 23.43 | 44.43 | 5.70 | 2.76 |
3 | 10.93 | 7.96 | 6.12 | 23.51 | 44.03 | 5.18 | 2.26 |
4 | 11.29 | 7.15 | 5.73 | 23.13 | 43.47 | 5.19 | 5.02 |
5 | 11.27 | 7.04 | 5.64 | 22.74 | 43.19 | 5.09 | 5.02 |
6 | 0.65 | 0.41 | 0 | 0 | 25.84 | 4.01 | 69.09 |
7 | 2.19 | 1.34 | 0.95 | 3.74 | 28.71 | 3.46 | 59.61 |
8 | 2.59 | 1.92 | 1.30 | 4.92 | 29.66 | 3.70 | 55.92 |
Fig. 7 (a) Secondary electron photograph and (b) corresponding EBSD phase diagram of sand-like grains of YSZ coating in high temperature CMAS corroded state Green: t-ZrO2; Red: m-ZrO2; White: CMAS Colourful images are available on website
Fig. 8 EBSD phase distribution diagrams (a,c,e) and Euler angle diagrams (b,d,f) of the B, C, and D regions of the high-temperature CMAS corroded YSZ coating, respectively Images in (a,c,e), Green: t-ZrO2, Red: m-ZrO2, White: pore in the YSZ coating. Different colors in (b,d,f) represent different grain orientations. Colourful images are available on website
[1] |
MEHBOOB G, LIU M J, XU T, et al. A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime. Ceramics International, 2020, 46(7):8497-8521.
DOI URL |
[2] | SHI M, XUE Z, ZHANG Z, et al. Effect of spraying powder characteristics on mechanical and thermal shock properties of plasma-sprayed YSZ thermal barrier coating. Surface and Coatings Technology, 2020, 395:125913. |
[3] |
WEN M, JORDAN E H, GELL M. Effect of temperature on rumpling and thermally grown oxide stress in an EB-PVD thermal barrier coating. Surface and Coatings Technology, 2006, 201(6):3289-3298.
DOI URL |
[4] | HU W, LEI Y, ZHANG J, et al. Mechanical and thermal properties of RE4Hf3O12(RE= Ho, Er, Tm) ceramics with defect fluorite structure. Journal of Materials Science & Technology, 2019, 35(9):2064-2069. |
[5] |
ZHANG X C, XU B S, WANG H D, et al. Modeling of the residual stresses in plasma-spraying functionally graded ZrO2/NiCoCrAlY coatings using finite element method. Materials & Design, 2006, 27(4):308-315.
DOI URL |
[6] | ZHANG G, FAN X, XU R, et al. Transient thermal stress due to the penetration of calcium-magnesium-alumino-silicate in EB-PVD thermal barrier coating system. Ceramics International, 2018, 44(11):12655-12663. |
[7] | WELLMAN R, NICHOLLS J R. A mechanism for the erosion of EB PVD TBCs. Materials Science Forum, 2001, 369:531-538. |
[8] |
CHEN X, WANG R, YAO N, et al. Foreign object damage in a thermal barrier system: mechanisms and simulations. Materials Science and Engineering: A, 2003, 352(1/2):221-231.
DOI URL |
[9] |
CHEN X, HE M Y, SPITSBERG I, et al. Mechanisms governing the high temperature erosion of thermal barrier coatings. Wear, 2004, 256(7/8):735-746.
DOI URL |
[10] |
EVANS A G, FLECK N A, FAULHABER S, et al. Scaling laws governing the erosion and impact resistance of thermal barrier coatings. Wear, 2006, 260(8):886-894.
DOI URL |
[11] |
ZHENG H, CHEN Z, LI G, et al. High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium- aluminosilicate (CMAS) deposits: first-principles calculations. Corrosion Science, 2017, 126:286-294.
DOI URL |
[12] |
PUJOL G, ANSART F, BONINO J P, et al. Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications. Surface and Coatings Technology, 2013, 237:71-78.
DOI URL |
[13] |
WU J, GUO H, GAO Y, et al. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. Journal of the European Ceramic Society, 2011, 31(10):1881-1888.
DOI URL |
[14] |
ZHANG B, SONG W, GUO H. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor. Journal of the European Ceramic Society, 2018, 38(10):3564-3572.
DOI URL |
[15] |
KRÄMER S, YANG J, LEVI C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3- SiO2(CMAS) deposits. Journal of the American Ceramic Society, 2006, 89(10):3167-3175.
DOI URL |
[16] |
MERCER C, FAULHABER S, EVANS A G, et al. delamination mechanism for thermal barrier coatings subject to calcium- magnesium-alumino-silicate (CMAS) infiltration. Acta materialia, 2005, 53(4):1029-1039.
DOI URL |
[17] |
CHEN X. Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings. Surface and Coatings Technology, 2006, 200(11):3418-3427.
DOI URL |
[18] |
KRÄMER S, FAULHABER S, CHAMBERS M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino- silicate (CMAS) penetration. Materials Science and Engineering: A, 2008, 490(1/2):26-35.
DOI URL |
[19] | MOHAN P, YUAN B, PATTERSON T, et al. Degradation of yttria stabilized zirconia thermal barrier coatings by molten CMAS (CaO-MgO-Al2O3-SiO2) deposits. Materials Science Forum, 2008, 595:207-212. |
[20] | KISI E H, HOWARD C J. Crystal structures of zirconia phases and their inter-relation. Key Engineering Materials, 1998, 153:1-36. |
[21] |
PENG H, WANG L, GUO L, et al. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Progress in Natural Science: Materials International, 2012, 22(5):461-467.
DOI URL |
[22] |
KRAUSE A R, SENTURK B S, GARCES H F, et al. 2ZrO2·Y2O3 thermal barrier coatings resistant to degradation by molten CMAS: part I, optical basicity considerations and processing. Journal of the American Ceramic Society, 2014, 97(12):3943-3949.
DOI URL |
[23] |
AYGUN A, VASILIEV A L, PADTURE N P, et al. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Materialia, 2007, 55(20):6734-6745.
DOI URL |
[24] |
LEVI C G, HUTCHINSON J W, VIDAL-SÉTIF M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull., 2012, 37(10):932-941.
DOI URL |
[25] |
LIPKIN D M, KROGSTAD J A, GAO Y, et al. Phase evolution upon aging of air-plasma sprayed t′-zirconia coatings: I—synchrotron X-ray diffraction. Journal of the American Ceramic Society, 2013, 96(1):290-298.
DOI URL |
[26] |
WEBSTER R I, OPILA E J. Mixed phase ytterbium silicate environmental-barriercoating materials for improved calcium- magnesium-alumino-silicate resistance. Journal of Materials Research, 2020, 35(17):2358-2372.
DOI URL |
[27] |
MACK D E, LAQUAI R, MÜLLER B, et al. Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig testing. Journal of the American Ceramic Society, 2019, 102(10):6163-6175.
DOI URL |
[28] |
KRAUSE A R, GARCES H F, DWIVEDI G, et al. Calcia- magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Materialia, 2016, 105:355-366.
DOI URL |
[29] |
HUANG Y L, SHEN Y L, ZENG Y, et al. EBSD analysis of microstructure changes in YSZ coatings during thermal cycling. Ceramics International, 2021, 47(4):5559-5569.
DOI URL |
[30] |
ZHU W, LI Z Y, YANG L, et al. Real-time detection of cmas corrosion failure in APS thermal barrier coatings under thermal shock. Experimental Mechanics, 2020, 60(6):775-785.
DOI URL |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | LI Liuyuan, HUANG Kaiming, ZHAO Xiuyi, LIU Huichao, WANG Chao. Influence of RE-Si-Al-O Glass Phase on Microstructure and CMAS Corrosion Resistance of High Entropy Rare Earth Disilicates [J]. Journal of Inorganic Materials, 2024, 39(7): 793-802. |
[3] | LI Jie, LUO Zhixin, CUI Yang, ZHANG Guangheng, SUN Luchao, WANG Jingyang. CMAS Corrosion Resistance of Y3Al5O12/Al2O3 Ceramic Coating Deposited by Atmospheric Plasma Spraying [J]. Journal of Inorganic Materials, 2024, 39(6): 671-680. |
[4] | FAN Dong, ZHONG Xin, WANG Yawen, ZHANG Zhenzhong, NIU Yaran, LI Qilian, ZHANG Le, ZHENG Xuebin. Corrosion Behavior and Mechanism of Aluminum-rich CMAS on Rare-earth Silicate Environmental Barrier Coatings: [J]. Journal of Inorganic Materials, 2023, 38(5): 544-552. |
[5] | CHEN Mingyue, YAN Zhichao, CHEN Jing, LI Minjuan, LIU Zhiyong, CAI Chuanbing. YBa2Cu3O7-δ Thin Film: Preparation by BaCl2/BaF2-MOD Method and Superconducting Property [J]. Journal of Inorganic Materials, 2023, 38(2): 199-204. |
[6] | PAN Yangyang, LIANG Bo, HONG Du, QI Zhixiang, NIU Yaran, ZHENG Xuebin. High Temperature Long-term Service Performance of TiAlCrY/YSZ Coating on TiAl Alloy [J]. Journal of Inorganic Materials, 2023, 38(1): 105-112. |
[7] | WANG Shiwei. Progress of Spontaneous Coagulation Casting of Ceramic Slurries Based on Hydrophobic Interaction [J]. Journal of Inorganic Materials, 2022, 37(8): 809-820. |
[8] | LIU Qiang, WANG Qian, CHEN Penghui, LI Xiaoying, ZHANG Lixuan, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Red Ce-doped 8YSZ Transparent Ceramics by Two-step Sintering [J]. Journal of Inorganic Materials, 2022, 37(8): 911-917. |
[9] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[10] | YU Ying, DU Hongliang, YANG Zetian, JIN Li, QU Shaobo. Electrocaloric Effect of Lead-free Bulk Ceramics: Current Status and Challenges [J]. Journal of Inorganic Materials, 2020, 35(6): 633-646. |
[11] | JI Xiaojuan,YU Yueguang,LU Xiaoliang. Effects of Impurities on Properties of YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2020, 35(6): 669-674. |
[12] | XU Dong, ZHU Yufang, ZHENG Yuanyi, LUO Yu, CHEN Hangrong. Injectable Magnetic Liquid-solid Phase Transition Material for MR Imaging and Low-temperature Magnetocaloric Therapy of Osteosarcoma [J]. Journal of Inorganic Materials, 2020, 35(11): 1277-1282. |
[13] | FAN Jia-Feng,ZHANG Xiao-Feng,ZHOU Ke-Song,LIU Min,DENG Chang-Guang,DENG Chun-Ming,NIU Shao-Peng,DENG Zi-Qian. Influence of Al-modification on CMAS Corrosion Resistance of PS-PVD 7YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2019, 34(9): 938-946. |
[14] | HAN Liu-Yang, GUO Shao-Bo, YAN Shi-Guang, RÉMIENS Denis, WANG Gen-Shui, DONG Xian-Lin. Electrocaloric Effect in Pb0.3CaxSr0.7-xTiO3 Ceramics Near Room Temperature [J]. Journal of Inorganic Materials, 2019, 34(9): 1011-1014. |
[15] | ZHANG Xiao-Chen, WANG Xue-Mei, WANG Chun-Lei. Influences of Sintering Methods on Microstructure and Physical Property of (K,Na,Li)(Nb,Sb,Ta)O3 Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2019, 34(7): 721-726. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||