Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (8): 857-866.DOI: 10.15541/jim20190492
Special Issue: 功能材料论文精选(2020)
Previous Articles Next Articles
CHEN Yun(),WANG Xusheng(
),LI Yanxia,YAO Xi
Received:
2019-09-25
Revised:
2019-11-12
Published:
2020-08-20
Online:
2020-01-20
Supported by:
CLC Number:
CHEN Yun, WANG Xusheng, LI Yanxia, YAO Xi. Dynamic Mechanical Analysis in the Investigation on Ferroelectrics[J]. Journal of Inorganic Materials, 2020, 35(8): 857-866.
Fig. 6 Dependence of modulus on temperature and frequency of PbZrO3 single crystal from [110]c direction (a) Real part of modulus; (b) Imaginary part of modulus[31]
Fig. 10 The S-N curves of BTWC ceramics[42,43] (a) BTWC ceramics sintered at different temperatures; (b) Unpoled and poled BTWC ceramics sintered at 1150 ℃
Fig. 11 Dynamic mechanical properties of 1-3 type PZT/epoxy resin composite (a-b) and dynamic mechanical properties of 0-3 type ZnOw/epoxy resin composite (c-d)[49]
CB/wt% | Tg/℃ | tanδmax | TA | ΔT/℃(tanδ>0.3) |
---|---|---|---|---|
0 | 85.86 | 0.405 | 18.21 | 20.28 |
2 | 96.73 | 0.442 | 19.27 | 22.81 |
4 | 100.26 | 0.429 | 18.73 | 20.86 |
6 | 88.76 | 0.480 | 20.80 | 24.26 |
8 | 93.40 | 0.439 | 19.64 | 21.23 |
Table 1 The relationship between CB content and the properties of 0-3 type PMN/CB/EP ferroelectric composite damping[50]
CB/wt% | Tg/℃ | tanδmax | TA | ΔT/℃(tanδ>0.3) |
---|---|---|---|---|
0 | 85.86 | 0.405 | 18.21 | 20.28 |
2 | 96.73 | 0.442 | 19.27 | 22.81 |
4 | 100.26 | 0.429 | 18.73 | 20.86 |
6 | 88.76 | 0.480 | 20.80 | 24.26 |
8 | 93.40 | 0.439 | 19.64 | 21.23 |
Fig. 12 Influence of grain size and electrical boundary on piezoelectric composite (a) Influence of PZT grain size on the loss factor of 0-3 type piezoelectric composites; (b) Influence of PZT grain size on the modulus of 0-3 type piezoelectric composites; (c-d) Influence of different electrical boundary conditions on the dynamic mechanical properties of 1-3 type piezoelectric composites[51]
[1] |
DOMENJOUD M, BERTHELOT E, GALOPIN N, et al. Characterization of giant magnetostrictive materials under static stress: influence of loading boundary conditions. Smart Mater. Struct., 2019,28:095012.
DOI URL |
[2] |
LIU N, ACOSTA M, WANG S, et al. Revealing the core-shell interactions of a giant strain relaxor ferroelectric 0.75Bi1/2Na1/2TiO3- 0.25SrTiO3. Sci. Rep., 2016,6:36910.
DOI URL PMID |
[3] |
LIU X, TAN X, Giant strains in non-textured (Bi1/2Na1/2)TiO3- based lead-free ceramics. Adv. Mater., 2016,283:574-578.
DOI URL PMID |
[4] |
LI T, LOU X, KE X, et al. Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5) TiO3-based lead-free piezoceramics. Acta Mater., 2017,12815:337-344.
DOI URL |
[5] |
LESTER B T, BAXEVANIS T, CHEMISKY Y, et al. Review and perspectives: shape memory alloy composite systems. Acta Mech., 2015,22612:3907-3960.
DOI URL |
[6] |
NARITA F, FOX M. A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater., 2018,20:1700743.
DOI URL |
[7] |
WEBBER K G, VOEGLER M, KHANSUR N H, et al. Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications. Smart Mater. Struct., 2017,266:063001.
DOI URL |
[8] | SADEGHPOUR S, MEYERS S, KRUTH J P, et al. Single-element omnidirectional piezoelectric ultrasound transducer for under water communication. Proceedings, 2017,1:363. |
[9] |
MA H K, LUO W F, LIN J Y. Development of a piezoelectric micropump with novel separable design for medical applications. Sensor Actuat. A Phys., 2015,236:57-66.
DOI URL |
[10] |
ZHOU M, LIANG R, ZHOU Z, et al. Potentiality of Bi and Mn co-doped lead-free NaNbO3 ceramics as a pyroelectric material for uncooled infrared thermal detectors. J. Eur. Ceram. Soc., 2019,396:2058-2063.
DOI URL |
[11] |
CROSS L E. Relaxor ferroelectric. Ferroelectrics, 1987,761:241-267.
DOI URL |
[12] |
STEEVES J B, GOLINVEAUX F S. Using the ferroelectric/ ferroelastic effect at cryogenic temperatures for set-and-hold actuation. Smart Mater. Struct., 2018,276:065024.
DOI URL |
[13] |
KWEON S Y, LEE K, PARK Y, et al. Low-temperature sintering of (1-x)Pb(Zr0.53Ti0.47)O3-xBiYO3 ceramics with nano-powder for piezo-speaker. Jpn. J. Appl. Phys., 2019,585:051008.
DOI URL |
[14] | MARAKAKIS K, TAIRIDIS G K, KOUTSIANITIS P. Shunt piezoelectric systems for noise and vibration control: a review. Fron. Built Environ., 2019,5:64. |
[15] |
GRIPP J A B, RADE D A. Vibration and noise control using shunted piezoelectric transducers: a review. Mech. Syst. Signal PR., 2018,112:359-383.
DOI URL |
[16] | XU Z, CHEN Z, HUNAG X, et al. Recent advances in multi- dimensional vibration mitigation materials and devices. Fron. Mater., 2019,6:00143. |
[17] | POYNTING J H. On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proceedings of the Royal Society of London. Series A, 1909,82557:546-559. |
[18] | GUO L M. The advanced dynamic mechanical thermal analysis (DMTA) and its applications. Modern Scientific Instrumentation, 1997,4:57-60. |
[19] | LI Z, SUN D, YAN B, et al. Fractional order model of viscoelastic suspension for crawler vehicle and its vibration suppression analysis. Transactions of the Chinese Society of Agricultural Engineering, 2015,317:72-79. |
[20] | 过梅丽. 高聚物与复合材料的动态力学热分析. 北京: 化学工业出版社, 2002. |
[21] | 张良莹. 电介质物理. 西安: 西安交通大学出版社, 1991. |
[22] | MENARD H P. Dynamic Mechanical Analysis. Florida: CRC Press, 2008. |
[23] |
YAN F, BAO P, WANG Y. Phase transition in relaxor ferroelectrics studied by mechanical measurements. Appl. Phys. Lett., 2003,8321:4384-4386.
DOI URL |
[24] |
CORDERO F. Hopping and clustering of oxygen vacancies in SrTiO3 by anelastic relaxation. Phys. Rev. B, 2007,7617:172106.
DOI URL |
[25] |
DIAZ J C C A, VENET M, CORDERO F, et al. Anelastic and optical properties of Bi0.5Na0.5TiO3 and (Bi0.5Na0.5)0.94Ba0.06TiO3 lead- free ceramic systems doped with donor Sm 3+. J. Alloy. Compd., 2018,74625:648-652.
DOI URL |
[26] |
ALGUERÓ M, JIMÉNEZ H, AMORÍN, et al. Low temperature phenomena in ferroic BiMO3-PbTiO3(M: Mn and Sc). Appl. Phys. Lett., 2011,9820:202904.
DOI URL |
[27] |
ZHANG D, YAO Y, FANG M, et al. Isothermal phase transition and the transition temperature limitation in the lead-free (1-x) Bi0.5Na0.5TiO3-xBaTiO3 system. Acta Mater., 2016,103:746-753.
DOI URL |
[28] |
ZHANG L, REN X, CARPENTER M A. Influence of local strain heterogeneity on high piezoelectricity in 0.5Ba(Zr0.2Ti0.8)O3- 0.5(Ba0.7Ca0.3)TiO3 ceramics. Phys. Rev. B, 2017,955:054116.
DOI URL |
[29] |
SILVA P, DIAZ J, FLORÉNCIO, et al. Analysis of the phase transitions in BNT-BT lead-free ceramics around morphotropic phase boundary by mechanical and dielectric spectroscopies. Arch. Metall. Mater., 2016,611:17-20.
DOI URL |
[30] |
UDDIN S, ZHENG G P, LQBAL Y, et al. Elastic softening near the phase transitions in (1-x)Bi1/2Na1/2TiO3-xBaTiO3 solid solutions. Mater. Res. Express, 2014,14:046102.
DOI URL |
[31] |
PUCHBERGER S, SOPRUNYUK V, MAJCHROWSKI A, et al. Domain wall motion and precursor dynamics in PbZrO3. Phys. Rev. B, 2016,9421:214101.
DOI URL |
[32] |
CHENG B, GABBAY M, FANTOZZI G. Anelastic relaxation associated with the motion of domain walls in barium titanate ceramics. J. Mater. Sci., 1996,3115:4141-4147.
DOI URL |
[33] |
JIMÉNEZ B, VICENTE J. Oxygen defects and low-frequency mechanical relaxation in Pb-Ca and Pb-Sm titanates. J. Phys. D Appl. Phys., 1998,314:446.
DOI URL |
[34] |
BOURIM E M, TANAKA H, GABBAY M, et al. Domain wall motion effect on the anelastic behavior in lead zirconate titanate piezoelectric ceramics. J. Appl. Phys., 2002,9110:6662-6669.
DOI URL |
[35] |
CHEN Y, WANG X S, LI Y S, et al. The low frequency relaxor properties of ferroelectric PZT-4 studied by DMA. J. Mater. Sci. Mater. Electron., 2019,308:1-9.
DOI URL |
[36] |
CHEN Y, YE H H, WANG X S, et al. Grain size effects on the electric and mechanical properties of submicro BaTiO3 ceramics. J. Euro. Ceram., 2020,402:391-400.
DOI URL |
[37] | KUMAR N, TIRUPATHI P, KUMAR B, et al. Observation of dielectric relaxor behavior in Pb0.95Sr0.05( Zr0.5Ti0.5)O3 ceramics. Adv. Mater. Lett., 2015,64:284-289. |
[38] |
DA SILVA JR P S, VENET M, FLORÉNCIO O. Influence of diffuse phase transition on the anelastic behavior of Nb-doped Pb(Zr0.53Ti0.47)O3 ceramics. J. Alloy. Comp., 2015,647:784-789.
DOI URL |
[39] |
MAZUERA A, SILVA JR P, RODRIGUES A, et al. Origin of discrepancy between electrical and mechanical anomalies in lead-free (K, Na)NbO3-based ceramics. Phys. Rev. B, 2016,9418:184101.
DOI URL |
[40] | CORDERO F, CRACIUN F, VERARDI P. Dielectric and anelastic relaxation in PMN-PT relaxors. Ferroelectrics, 2003,2901:141-149. |
[41] |
YU Y, WANG X S, LI Y S, et al. Fatigue behaviors in PZT ceramics induced by mechanical cyclic load. Ferroelectrics Lett., 2014,414/5/6:123-128.
DOI URL |
[42] |
XIE S, XU J, CHEN Y, et al. Flexural fracture mechanisms and fatigue behaviors of Bi4Ti3O12-based high-temperature piezoceramics sintered at different temperatures. Ceram. Int., 2018,4414:16758-16765.
DOI URL |
[43] |
XIE S, XU J, CHEN Y, et al. Poling effect and sintering temperature dependence on fracture strength and fatigue properties of bismuth titanate based piezoceramics. Ceram. Int., 2018,4416:20432-20440.
DOI URL |
[44] |
ASMATULU R, CLAUS R, MECHAM J. Improving the damping properties of composites using ferroelectric inclusions. J. Intel. Mater. Syst. Str., 2005,165:463-468.
DOI URL |
[45] |
SUMITA M, GOHDA H, ASAI S, et al. New damping materials composed of piezoelectric and electro-conductive, particle-filled polymer composites: effect of the electromechanical coupling factor. Makromol. Chem., Rapid Commun., 1991,1212:657-661.
DOI URL |
[46] |
YU J, KANEKO H, ASAI S, et al. Electrical and dynamic mechanical behavior of BaTiO3/VGCF/LDPE composite. Compos. Interface., 2000,75/6:411-424.
DOI URL |
[47] |
MARRA S, RAMESH K, DOUGLAS A. The mechanical properties of lead-titanate/polymer 0-3 composites. Compos. Sci. Techno., 1999,5914:2163-2173.
DOI URL |
[48] |
ZHANG C, HU Z, GAO G, et al. Damping behavior and acoustic performance of polyurethane/lead zirconate titanate ceramic composites. Mater. Design, 2013,46:503-510.
DOI URL |
[49] |
HONG X Q, WANG X S, LI X M, et al. Damping properties of epoxy-embedded piezoelectric composites. Key Engineering Materials, 2012,512-515:1342-1346.
DOI URL |
[50] | SHI M X, HUANG Z X, WEI T, et al. Damping properties and mechanism of 0-3 PMN/CB/EP composites. Adv. Mater. Res., 2009,66:45-48. |
[51] | 武传贵. 有机无机复合材料阻尼性能研究. 上海: 同济大学硕士学位论文, 2011. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||