Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (8): 847-856.DOI: 10.15541/jim20190554
Special Issue: 功能材料论文精选(二):发光材料(2020)
JI Haipeng1(),ZHANG Zongtao1,XU Jian2,TANABE Setsuhisa2,CHEN Deliang1(
),XIE Rongjun3(
)
Received:
2019-10-31
Revised:
2019-11-20
Published:
2020-08-20
Online:
2020-03-06
Supported by:
CLC Number:
JI Haipeng, ZHANG Zongtao, XU Jian, TANABE Setsuhisa, CHEN Deliang, XIE Rongjun. Advance in Red-emitting Mn4+-activated Oxyfluoride Phosphors[J]. Journal of Inorganic Materials, 2020, 35(8): 847-856.
Fig. 1 Energy levels arising from a d3 configuration for a free transition metal ion (C=4.5B) (a), Tanabe-Sugano diagram for the d3 electron configuration in an octahedral crystal field (C=4.5B) (b), orientation of the five d-orbitals with respect to the ligands of an octahedral complex (black dots showing the ligands around the transition metal ion) (c), and crystal field splitting for the d-orbitals in an octahedral crystal field (d)[16]
Fig. 2 Regular octahedron coordination and distorted octahedra coordination (a) Point symmetry of Oh; (b) Central cation shifting to a vertex, C4v; (c) Central cation shifting to an edge, C2v; (d) Central cation shifting to a face, C3v
Cation | Phosphor host | Peaking wavelength/nm | (R-line/ν6 intensity ratio)/% | T50%/K | Ref. |
---|---|---|---|---|---|
d0 | Na2WO2F4 | 619 | 125 | 340 | [21-22] |
Cs2WO2F4 | 632 | 5 | 350 | [23] | |
Cs2NbOF5 | 632 | 10 | - | [24-25] | |
BaNbOF5 | 629 | 10 | - | [26] | |
Sr2ScO3F | 690 | - | 320 | [27] | |
BaTiOF4 | 632 | 5 | - | [28] | |
d10 | Mg28Ge7.55O32F15.04 | 657 | - | 700 | [29] |
s0 | LiAl4O6F | 662 | 5-10 | - | [30] |
Table 1 The reported Mn4+ activated oxyfluoride phosphors
Cation | Phosphor host | Peaking wavelength/nm | (R-line/ν6 intensity ratio)/% | T50%/K | Ref. |
---|---|---|---|---|---|
d0 | Na2WO2F4 | 619 | 125 | 340 | [21-22] |
Cs2WO2F4 | 632 | 5 | 350 | [23] | |
Cs2NbOF5 | 632 | 10 | - | [24-25] | |
BaNbOF5 | 629 | 10 | - | [26] | |
Sr2ScO3F | 690 | - | 320 | [27] | |
BaTiOF4 | 632 | 5 | - | [28] | |
d10 | Mg28Ge7.55O32F15.04 | 657 | - | 700 | [29] |
s0 | LiAl4O6F | 662 | 5-10 | - | [30] |
Fig. 3 Unit cell of Na2WO2F4 (a), highly-distorted [WO2F4] octahedra (b), and emission spectrum of Na2WO2F4:Mn4+ (c) [21] with inset showing phosphor image under 460 nm light Na: yellow; W: blue; O: red; F: gray
Fig. 4 (a) Unit cell of Cs2WO2F4 which contains slightly- distorted [W(O,F)6] octahedra, with the bottom-right showing the local coordination of Mn4+ in K2MnF6; (b) Excitation and emission spectra of Cs2WO2F4:Mn4+ with inset showing the phosphor image under 365 nm light[23]
Fig. 5 PLE and DRS spectra of the Cs2NbOF5:Mn4+ phosphor (a) and temperature-dependent emission spectra of Cs2NbOF5:Mn4+ (b)[24] with the inset showing the intensity evolution of the integrated emission (Ie), the stokes emission (Is) and the anti-stokes emmission (Ia)
Fig. 6 The PLE (a) and PL (b) spectra of the BaNbOF5:Mn4+ phosphor at temperature of 78 and 298 K with insets showing the phosphor images under natural or UV light[26]
Fig. 8 Excitation and emission spectra of BaTiOF4:Mn4+ at room temperature (a), emission spectra of BaTiOF4:Mn4+ at 77 K and 293 K (b), unit cell of BaTiOF4 (c), and distorted octahedron coordination of [Ti2OF4] (d)[28]Ba: yellow; Ti: blue; O: red; F: gray
Fig. 9 Comparison of the calculated Mn4+ energy levels in Mg28Ge7.55O32F15.04 for all possible Mn4+ positions in Ge/Mg sites with the measured spectrum[29]
[1] |
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chemical Reviews, 2018,1184:1951-2009.
DOI URL PMID |
[2] |
XIA Z, LIU Q. Progress in discovery and structural design of color conversion phosphors for LEDs. Progress in Materials Science, 2016,84:59-117.
DOI URL |
[3] |
LIN C C, MEIJERINK A, LIU R S. Critical red components for next-generation white LEDs. Journal of Physical Chemistry Letters, 2016,73:495-503.
DOI URL PMID |
[4] |
HU Y, ZHUANG W, YE H, et al. Preparation and luminescent properties of (Ca1-xSrx)S:Eu 2+ red-emitting phosphor for white LED . Journal of Luminescence, 2005,1113:139-145.
DOI URL |
[5] |
XIE R J, HINTZEN H T. Optical properties of (oxy)nitride materials: a review. Journal of the American Ceramic Society, 2013,963:665-687.
DOI URL |
[6] |
PUST P, WEILER V, HECHT C, et al. Narrow-band red-emitting Sr[LiAl3N4]:Eu 2+ as a next-generation LED-phosphor material . Nature Materials, 2014,139:891-896.
DOI URL |
[7] |
SCHMIECHEN S, SCHNEIDER H, WAGATHA P, et al. Toward new phosphors for application in illumination-grade white pc-LEDs: the nitridomagnesosilicates Ca[Mg3SiN4]:Ce 3+, Sr[Mg3SiN4]:Eu 2+, and Eu[Mg3SiN4] . Chemistry of Materials, 2014,268:2712-2719.
DOI URL |
[8] |
ADACHI S. Photoluminescence spectra and modeling analyses of Mn 4+-activated fluoride phosphors: a review . Journal of Luminescence, 2018,197:119-130.
DOI URL |
[9] | ADACHI S. Mn4+-activated red and deep red-emitting phosphors. ECS Journal of Solid State Science and Technology, 2020, 9(1): 016001-1-34. |
[10] |
SIJBOM H F, VERSTRAETE R, JOOS J J, et al. K2SiF6:Mn 4+ as a red phosphor for displays and warm-white LEDs: a review of properties and perspectives . Optical Materials Express, 2017,79:3332-3365.
DOI URL |
[11] |
PAULUSZ A G. Efficient Mn(IV) emission in fluorine coordination. Journal of the Electrochemical Society, 1973,1207:942-947.
DOI URL |
[12] | LIU Y H, GAO W, CHEN G T, et al. Research progress and development trend of fluoride phosphor for white LED. China Light & Lighting, 2018(2):20-24. |
[13] |
VERSTRAETE R, SIJBOM H F, KORTHOUT K, et al. K2MnF6 as a precursor for saturated red fluoride phosphors: the struggle for structural stability. Journal of Materials Chemistry C, 2017,541:10761-10769.
DOI URL |
[14] | ZHOU Z, ZHOU N, XIA M, et al. Research progress and application prospects of transition metal Mn 4+-activated luminescent materials . Journal of Materials Chemitry C, 2016,439:9143-9161. |
[15] | ZHOU Y Y, WANG L Y, DENG T T, et al. Recent advances in Mn 4+-doped fluoride narrow-band red-emitting phosphors . Scientia Sinica Technologica, 2017,4711:1111-1125. |
[16] | TIM S. New Narrow Band Red Phosphors for White Light Emitting Diodes. Utrecht: Doctoral Dissertation of Utrecht University, 2018. |
[17] |
TANABE Y, SUGANO S. On the absorption spectra of complex ions II. Journal of the Physical Society of Japan, 1954,9:766-779.
DOI URL |
[18] |
BRIK M G, CAMARDELLO S J, SRIVASTAVA A M. Spin-forbidden transitions in the spectra of transition metal ions and nephelauxetic effect. ECS Journal of Solid State Science and Technology, 2016,51:R3067-R3077.
DOI URL |
[19] |
BRIK M G, BEERS W W, COHEN W, et al. On the Mn 4+ R-line emission intensity and its tunability in solids . Optical Materials, 2019,91:338-343.
DOI URL |
[20] |
JI H, UEDA J, BRIK M G, et al. Intense deep-red zero phonon line emission of Mn 4+ in double perovskite La4Ti3O12 . Physical Chemistry Chemical Physics, 2019,2145:25108-25117.
DOI URL PMID |
[21] |
HU T, LIN H, CHENG Y, et al. A highly-distorted octahedron with a C2v group symmetry inducing an ultra-intense zero phonon line in Mn 4+-activated oxyfluoride Na2WO2F4 . Journal of Materials Chemistry C, 2017,540:10524-10532.
DOI URL |
[22] |
CAI P, WANG X, SEO H J. Excitation power dependent optical temperature behaviors in Mn 4+ doped oxyfluoride Na2WO2F4 . Physical Chemistry Chemical Physics, 2018,203:2028-2035.
DOI URL PMID |
[23] | CAI P, QIN L, CHEN C, et al. Luminescence, energy transfer and optical thermometry of a novel narrow red emitting phosphor: Cs2WO2F4:Mn 4+ . Dalton Transcations, 2017,4641:14331-14340. |
[24] |
WANG Q, YANG Z, WANG H, et al. Novel Mn 4+-activated oxyfluoride Cs2NbOF5:Mn 4+ red phosphor for warm white light- emitting diodes . Optical Materials, 2018,85:96-99.
DOI URL |
[25] | MING H, ZHANG J, LIU L, et al. A novel Cs2NbOF5:Mn 4+ oxyfluoride red phosphor for light-emitting diode devices . Dalton Transcations, 2018,4745:16048-16056. |
[26] |
DONG X, PAN Y, LI D, et al. A novel red phosphor of Mn 4+ ion-doped oxyfluoroniobate BaNbOF5 for warm WLED applications . CrystEngComm, 2018,2037:5641-5646.
DOI URL |
[27] |
KATO H, TAKATA Y, KOBAYASHI M, et al. Photoluminescence properties of layered perovskite-type strontium scandium oxyfluoride activated with Mn 4+ . Frontiers in Chemistry, 2018,6:467.
DOI URL PMID |
[28] |
LIANG Z, YANG Z, TANG H, et al. Synthesis, luminescence properties of a novel oxyfluoride red phosphor BaTiOF4:Mn 4+ for LED backlighting . Optical Materials, 2019,90:89-94.
DOI URL |
[29] |
BRIK M G, SRIVASTAVA A M. A computation study of site occupancy in the commercial Mg28Ge7.55O32F15.04:Mn 4+ phosphor . Optical Materials, 2016,54:245-251.
DOI URL |
[30] |
WANG Q, LIAO J, KONG L, et al. Luminescence properties of a non-rare-earth doped oxyfluoride LiAl4O6F:Mn 4+ red phosphor for solid-state lighting . Journal of Alloys and Compounds, 2019,772:499-506.
DOI URL |
[31] |
SRIVASTAVA A M, ACKERMAN J F. Synthesis and luminescence properties of Cs2NbOF5 and Cs2NbOCl5 with isolated [NbOX5] -2 (X=F -, Cl -) octahedra . Materials Research Bulletin, 1991,266:443-448.
DOI URL |
[32] | SRIVASTAVA A M, ACKERMAN J F. Synthesis and luminescence properties of barium niobium oxide fluoride (BaNbOF5) with isolated [NbOF5] 2- octahedra . Chemitry of Materials, 1992,45:1011-1013. |
[33] |
BLESS P W, VON DREELE R B, KOSTINER E, et al. Anion and cation defect structure in magnesium fluorogermanate. Journal of Solid State Chemistry, 1972,42:262-268.
DOI URL |
[34] |
BEERS W W, SMITH D, COHEN W E, et al. Temperature dependence (13-600 K) of Mn 4+ lifetime in commercial Mg28Ge7.55O32F15.04 and K2SiF6 phosphors . Optical Materials, 2018,84:614-617.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | FAN Xiaoxuan, ZHENG Yonggui, XU Lirong, YAO Zimin, CAO Shuo, WANG Kexin, WANG Jiwei. Organic Pollutant Fenton Degradation Driven by Self-activated Afterglow from Oxygen-vacancy-rich LiYScGeO4: Bi3+ Long Afterglow Phosphor [J]. Journal of Inorganic Materials, 2025, 40(5): 481-488. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||