Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (5): 525-531.DOI: 10.15541/jim20190300
Previous Articles Next Articles
WANG Pengren,GOU Yanzi(),WANG Hao
Received:
2019-06-20
Revised:
2019-07-29
Published:
2020-05-20
Online:
2019-09-12
Supported by:
CLC Number:
WANG Pengren, GOU Yanzi, WANG Hao. Third Generation SiC Fibers for Nuclear Applications[J]. Journal of Inorganic Materials, 2020, 35(5): 525-531.
Trade mark | Tensile strength/GPa | Young’s modulus/GPa | Diameter/μm | C/Si | |
---|---|---|---|---|---|
First generation | Nicalon 200 | 3.0 | 200 | 14 | 1.33 |
Tyranno Lox-M | 3.3 | 185 | 11 | 1.38 | |
KD-I | >2.5 | >170 | 11.5 | 1.29 | |
Second generation | Hi-Nicalon | 2.8 | 270 | 12 | 1.39 |
Tyranno ZE | 3.5 | 233 | 11 | 1.34 | |
KD-II | >2.7 | >250 | 11.5 | 1.35-1.40 | |
Third generation | Hi-Nicalon S | 2.6 | 340 | 12.0 | 1.05 |
KD-S | 2.7 | 310 | 11.0 | 1.08 | |
Tyranno SA | 2.8 | 375 | 8.0&10.0 | 1.08 | |
KD-SA | 2.5 | 350 | 10.5 | 1.05 | |
Sylramic | 3.2 | 400 | 10.0 | 1.01 |
Table 1 Compositions and mechanical properties of three generations SiC fibers[5,13-18]
Trade mark | Tensile strength/GPa | Young’s modulus/GPa | Diameter/μm | C/Si | |
---|---|---|---|---|---|
First generation | Nicalon 200 | 3.0 | 200 | 14 | 1.33 |
Tyranno Lox-M | 3.3 | 185 | 11 | 1.38 | |
KD-I | >2.5 | >170 | 11.5 | 1.29 | |
Second generation | Hi-Nicalon | 2.8 | 270 | 12 | 1.39 |
Tyranno ZE | 3.5 | 233 | 11 | 1.34 | |
KD-II | >2.7 | >250 | 11.5 | 1.35-1.40 | |
Third generation | Hi-Nicalon S | 2.6 | 340 | 12.0 | 1.05 |
KD-S | 2.7 | 310 | 11.0 | 1.08 | |
Tyranno SA | 2.8 | 375 | 8.0&10.0 | 1.08 | |
KD-SA | 2.5 | 350 | 10.5 | 1.05 | |
Sylramic | 3.2 | 400 | 10.0 | 1.01 |
Brand name | Fiber type | Preparation technology | Tensile strength at room temperature / MPa | Failure duration |
---|---|---|---|---|
Hypercomp PP-HN | Hi-Nicalon | MI | 321 | >1000 h/1200 ℃ |
Hypercomp SC-HN | Hi-Nicalon | MI | 358 | >1000 h/1200 ℃ |
N22 | Sylramic | CVI+MI | 400 | ~500 h/1204 ℃ |
N24-A | Sylramic-iBN | CVI+MI | 450 | ~500 h/1315 ℃ |
N24-B | Sylramic-iBN | CVI+MI | 450 | ~500 h/1315 ℃ |
N24-C | Sylramic-iBN | CVI+MI | 310 | >1000 h/1315 ℃ |
N26 | Sylramic-iBN | CVI+PIP | 330 | ~300 h/1450 ℃ |
A410 | Hi-Nicalon | CVI | 200-315 | 600 h/1200 ℃ |
A416 | Hi-Nicalon S | CVI | 200-315 | 200 h/1400 ℃ |
Table 2 Different SiCf/SiC composites and their properties[46]
Brand name | Fiber type | Preparation technology | Tensile strength at room temperature / MPa | Failure duration |
---|---|---|---|---|
Hypercomp PP-HN | Hi-Nicalon | MI | 321 | >1000 h/1200 ℃ |
Hypercomp SC-HN | Hi-Nicalon | MI | 358 | >1000 h/1200 ℃ |
N22 | Sylramic | CVI+MI | 400 | ~500 h/1204 ℃ |
N24-A | Sylramic-iBN | CVI+MI | 450 | ~500 h/1315 ℃ |
N24-B | Sylramic-iBN | CVI+MI | 450 | ~500 h/1315 ℃ |
N24-C | Sylramic-iBN | CVI+MI | 310 | >1000 h/1315 ℃ |
N26 | Sylramic-iBN | CVI+PIP | 330 | ~300 h/1450 ℃ |
A410 | Hi-Nicalon | CVI | 200-315 | 600 h/1200 ℃ |
A416 | Hi-Nicalon S | CVI | 200-315 | 200 h/1400 ℃ |
[1] |
ICHIKAWA H . Polymer-derived ceramic fibers. Annual Review of Materials Research, 2016,46(1):335-356.
DOI URL |
[2] |
ZHAO S, ZHOU X G, YU J S , et al. Research and development in fabrication and properties of SiC/SiC composites. Materials Reports, 2013,27(1):66-70.
DOI URL PMID |
[3] |
GOU Y Z, WANG H, JIAN K , et al. Preparation and characterization of SiC fibers with diverse electrical resistivity through pyrolysis under reactive atmospheres. Journal of the European Ceramic Society, 2017,37:517-522.
DOI URL |
[4] |
YAJIMA S, HAYASHI J, OMORI M . Continuous SiC fiber of high tensile strength. Chemistry Letters, 1975,4(9):931-934.
DOI URL PMID |
[5] |
BUNSELL A R, PIANT A . A review of the development of three generations of small diameter silicon carbide fibres. Journal of Materials Science, 2006,41(3):823-839.
DOI URL |
[6] | ISHIKAWA T . Recent developments of the SiC fiber Nicalon and its composites, including properties of the SiC fiber Hi-Nicalon for ultra-high temperature. Composites Science & Technology, 1994,51(2):135-144. |
[7] | YAMAMURA T, ISHIKAWA T, SHIBUYA M , et al. Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor. Journal of Materials Science, 1988,23(7):2589-2594. |
[8] |
VAHLAS C, MONTHIOUX M . On the thermal degradation of lox-M tyranno ® fibres. Journal of the European Ceramic Society, 1995,15(5):445-453.
DOI URL |
[9] | SHIBUYA M, YAMAMURA T . Characteristics of a continuous Si-Ti-C-O fibre with low oxygen content using an organometallic polymer precursor. Journal of Materials Science, 1996,31(12):3231-3235. |
[10] |
SHIMOO T, HAYATSU T, TAKEDA M , et al. High-temperature decomposition of low-oxygen SiC fiber under N2 atmosphere. Journal of the Ceramic Society of Japan, 2010,102(1192):1142-1147.
DOI URL |
[11] | TAKEDA M, IMAI Y, ICHIKAWA H , et al. Thermal stability of SiC fiber prepared by an irradiation-curing process. Composites Science & Technology, 1999,59(6):793-799. |
[12] | CHOLLON G, PAILLER R, NASLAIN R , et al. Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi-Nicalon). Journal of Materials Science, 1997,32(2):327-347. |
[13] | CHEN D R, HAN W J, LI S W , et al. Fabrication, microstructure, properties and applications of continuous ceramic fibers: a review of present status and further directions. Advanced Ceramics, 2018,39(3):151-222. |
[14] |
GOU Y Z, JIAN K, WANG H , et al. Fabrication of nearly stoichiometric polycrystalline SiC fibers with excellent high-temperature stability up to 1900 ℃. Journal of the American Ceramic Society, 2017,101(5):1-10.
DOI URL |
[15] | 曹适意 . KD系列连续碳化硅纤维组成、结构与性能关系研究. 长沙: 国防科技大学博士学位论文, 2017. |
[16] | 王军, 宋永才, 王浩 , 等. 先驱体转化法制备碳化硅纤维. 北京: 科学出版社, 2018: 82-83. |
[17] | ZU M, ZOU S M, HAN S , et al. Effects of heat treatment on the microstructures and properties of KD-I SiC fibres. Materials Research Innovations, 2015,19:437-441. |
[18] | BAI W C, JIAN K . The microstructure and elctrical resistivity of near-stoichiometric SiC fiber. IOP Conf. Series: Materials Science and Engineering, 2019,490(Chapter 1):22057-22065. |
[19] |
COUSTUMER P L, MONTHIOUX M, OBERLIN A . Understanding Nicalon Fibre. Journal of the European Ceramic Society, 1993,11(2):95-103.
DOI URL |
[20] |
PORTE L, SARTRE A . Evidence for a silicon oxycarbide phase in the Nicalon silicon carbide fibre. Journal of Materials Science, 1989,24(1):271-275.
DOI URL |
[21] | ISHIKAWA T, KOHTOKU Y, KUMAGAWA K , et al. High-strength alkali-resistant sintered SiC fibre stable to 2,200 ℃. Nature, 1998,391(6669):773-775. |
[22] | TAKEDA M, SAKAMOTO J, IMAI Y , et al. Properties of Stoichiometric Silicon Carbide Fiber Derived from Polycarbosilane. Proceedings of the 18th Annual Conference on Composites and Advanced Ceramic Materials - A: Ceramic Engineering and Science Proceedings, Cocoa Beach, Florida, U.S., 1994: 133-141. |
[23] | YUN H M, DICARLO J A, BHATT R T , et al. Processing and Structural Advantages of the Sylramic-iBN SiC Fiber for SiC/SiC Components. 27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites-B: Ceramic Engineering and Science Proceedings, Cocoa Beach, Florida, U.S., 2008: 247-253. |
[24] | ISHIKAWA T, KAJII S, HISAYUKI T , et al. New type of SiC- sintered fiber and its composite material. Key Engineering Materials, 2008,164(3):283-290. |
[25] | ISHIKAWA T . Advances in inorganic fibers. Polymeric and Inorganic Fibers, 2005,178:109-144. |
[26] |
DICARLO J A . Creep limitations of current polycrystalline ceramic fibers. Composites Science & Technology, 1994,51(2):213-222.
URL PMID |
[27] | 赵大方 . SA型碳化硅纤维的连续化技术研究. 长沙: 国防科学技术大学博士学位论文, 2008. |
[28] |
SUGIMOTO M, SHIMOO T, OKAMURA K , et al. Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation, part 1evolved gas analysis. Journal of the American Ceramic Society, 1995,78(4):1013-1017.
DOI URL |
[29] | ICHIKAWA H . Recent advances in Nicalon ceramic fibres including Hi-Nicalon type S. Annales de Chimie-Sciences des Materiaux, 2000,25(7):523-528. |
[30] |
ZHANG Y, WU C, WANG Y , et al. A detailed study of the microstructure and thermal stability of typical SiC fibers. Materials Characterization, 2018,146:91-100.
DOI URL |
[31] |
XIE Z F, GOU Y Z . Polyaluminocarbosilane as precursor for aluminium- containing SiC fiber from oxygen-free sources. Ceramics International, 2016,42:10439-10443.
DOI URL |
[32] |
GOU Y Z, WANG H, JIAN K , et al. Facile synthesis of melt- spinnablepolyaluminocarbosilane using low-softening-point polycarbosilane for Si-C-Al-O fibers. Journal of Materials Science, 2016,51:8240-8249.
DOI URL |
[33] | YUN H M, DICARLO J A . Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers. 23rd Annual Conference on Composites, Advanced Ceramics, Materials, and structures: A: Ceramic Engineering and Science Proceedings, Cocoa Beach, Florida, U.S., 1999. |
[34] |
MORSCHER G N, HURST J, BREWER D . Intermediate-temperature stress rupture of a woven Hi-Nicalon, BN-interphase, SiC- matrix composite in air. Journal of the American Ceramic Society, 2010,83(6):1441-1449.
DOI URL |
[35] |
KATOH Y, SNEAD L L, JR C H H , et al. Current status and critical issues for development of SiC composites for fusion applications. Journal of Nuclear Materials, 2007, 367- 370(part-PA):659-671.
DOI URL |
[36] |
GOU Y Z, WANG H, JIAN K . Formation of carbon-rich layer on the surface of SiC fiber by sintering under vacuum for superior mechanical and thermal properties. Journal of the European Ceramic Society, 2016,37:907-914
DOI URL |
[37] |
JI X Y, WANG S S, SHAO C W , et al. The high-temperature corrosion behavior of SiBCN fibers for aerospace applications. ACS Applied Materials & Interfaces, 2018,10(23):19712-19720.
DOI URL PMID |
[38] |
RICCARDI B, TRENTINI E, LABANTI M , et al. Characterization of commercial grade Tyranno SA/CVI-SiC composites. Journal of Nuclear Materials, 2007, 367- 370(part-PA):672-676.
DOI URL |
[39] | HILLIG W B . Making ceramic composites by melt infiltration. American Ceramic Society Bulletin, 1994,73(4):56-62. |
[40] | MORSCHER G N . Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites. Composites Science & Technology, 2004,64(9):1311-1319. |
[41] | MORSCHER G N, REJI J, LARRY Z , et al. Creep in vacuum of woven Sylramic-iBN melt-infiltrated composites. Composites Science & Technology, 2011,71(1):52-59. |
[42] |
SINGH M . Microstructure and mechanical properties of reaction- formed joints in reaction-bonded silicon carbide ceramics. Journal of Materials Science, 1998,33(24):5781-5787.
DOI URL |
[43] |
KOHYAMA A, PARK J S, JUNG H C . Advanced SiC fibers and SiC/SiC composites toward industrialization. Journal of Nuclear Materials, 2011,417(1/2/3):340-343.
DOI URL |
[44] |
DONG S, KATOH Y, KOHYAMA A . Processing optimization and mechanical evaluation of hot pressed 2D Tyranno-SA/SiC composites. Journal of the European Ceramic Society, 2003,23(8):1223-1231.
DOI URL |
[45] |
KISHIMOTO H, OZAWA K, HASHITOMI O , et al. Microstructural evolution analysis of NITE SiC/SiC composite using TEM examination and dual-ion irradiation. Journal of Nuclear Materials, 2007, 367- 370(part-PA):748-752.
DOI URL |
[46] | WANG J, LIAN Y L, HAN X F . Research and application of polyimide composites for aeroengine. Aeronautical Manufacturing Technology, 2017. |
[47] | HINOKI T, SNEAD L L, KATOH Y , et al. The effect of high dose/high temperature irradiation on high purity fibers and their silicon carbide composites. Journal of Nuclear Materials, 2008,307(3):1157-1162. |
[48] |
HOLLENBERG G W, JR C H H, YOUNGBLOOD G E , et al. The effect of irradiation on the stability and properties of monolithic silicon carbide and SiCf/SiC composites up to 25 dpa. Journal of Nuclear Materials, 1994,219(2):70-86.
DOI URL |
[49] | NEWSOME G A . The effect of neutron irradiation on silicon carbide fibers. John Wiley & Sons, Inc. 1997: 579-583. |
[50] |
KATOH Y, OZAWA K, SHIH C , et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects. Journal of Nuclear Materials, 2014,448(1/2/3):448-476.
DOI URL |
[51] | EHRLICH K . Materials research towards a fusion reactor. Fusion Engineering & Design, 2001,56(1):71-82. |
[52] | NOZAWA T, HINOKI T, HASEGAWA A , et al. Recent advances and issues in development of silicon carbide composites for fusion applications. Journal of Nuclear Materials, 2010,41(17):622-627. |
[53] |
ZHAO S, ZHOU X G, YU H , et al. Compatibility of PIP SiCf/SiC with LiPb at 700 ℃. Fusion Engineering & Design, 2010,85(7/8/9):1624-1626.
DOI URL |
[54] |
KATOH Y, NOZAWA T, SHIH C , et al. High-dose neutron irradiation of Hi-Nicalon type S silicon carbide composites. Part 2: Mechanical and physical properties. Journal of Nuclear Materials, 2015,462:450-457.
DOI URL |
[55] | JONES R H, GIANCARLI L, HASEGAWA A , et al. Promise and challenges of SiCf/SiC composites for fusion energy applications. Journal of Nuclear Materials, 2002,307(3):1057-1072. |
[56] | UEDA S, NISHIO S, SEKI Y , et al. A fusion power reactor concept using SiC/SiC composites. Journal of Nuclear Materials, 1998, s258- 263(98):1589-1593. |
[57] | SNEAD L L, JONES R H, KOHYAMA A , et al. Status of silicon carbide composites for fusion. Journal of Nuclear Materials, 1996, s233- 237(96):26-36. |
[58] | HASEGAWA A, KOHYAMA A, JONES R H , et al. Critical issues and current status of SiCf/SiC composites for fusion. Journal of Nuclear Materials, 2000,s(283-287):128-137. |
[59] |
SENOR D J, YOUNGBLOOD G E, MOORE C E , et al. Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics. Fusion Technology, 1996,30(3):943-955.
DOI URL |
[60] |
JONES R H, STEINER D, HEINISCH H L , et al. Radiation resistant ceramic matrix composites. Journal of Nuclear Materials, 1997,245(2/3):87-107.
DOI URL PMID |
[61] | YAMADA R, IGAWA N, TAGUCHI T . Thermal diffusivity/conductivity of Tyranno SA fiber- and Hi-Nicalon type S fiber-reinforced 3-D SiC/SiC composites. Journal of Nuclear Materials, 2004,329(1):497-501. |
[62] | NISHIO S, UEDA S, KURIHARA R , et al. Prototype tokamak fusion reactor based on SiC/SiC composite material focusing on easy maintenance. Fusion Engineering & Design, 2000,48(3/4):271-279. |
[63] |
IHLI T, BASU T K, GIANCARLI L M , et al. Review of blanket designs for advanced fusion reactors. Fusion Engineering & Design, 2008,83(7/8/9):912-919.
DOI URL |
[64] | NORAJITRA P, BUHLER L, FISCHER U , et al. The EU advanced lead lithium blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators. Fusion Engineering & Design, 2001,s(58/59):629-634. |
[65] |
NORAJITRA P, ABDEL-KHALIK S I, GIANCARLI L M , et al. Divertor conceptual designs for a fusion power plant. Fusion Engineering & Design, 2008,83(7):893-902.
DOI URL |
[66] | PUMA A L, GIANCARLI L, GOLFIER H , et al. Potential performances of a divertor concept based on liquid metal cooled SiCf/SiC structures. Fusion Engineering & Design, 2003, s66- 68(3):401-405. |
[67] | SATORI K, KISHIMOTO H, PARK J S , et al. Thermal insulator of porous SiC/SiC composites for fusion blanket system. Materials Science and Engineering Conference Series, 2011: 2150-2159. |
[68] |
KISHIMOTO H, ABE T, PARK J S , et al. SiC/SiC and W/SiC/SiC composite heater by NITE-method for IFMIF and fission reactor irradiation rigs. IOP Conference Series: Materials Science and Engineering, 2011,18(16):162018-162022.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||