Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (5): 511-524.DOI: 10.15541/jim20190305
Special Issue: 功能陶瓷论文精选(一):发光材料; 【虚拟专辑】电致变色与热致变色材料
JIA Hanxiang1,2,CAO Xun1(),JIN Pingshi1
Received:
2019-06-24
Revised:
2019-11-18
Published:
2020-05-20
Online:
2020-01-15
Supported by:
CLC Number:
JIA Hanxiang, CAO Xun, JIN Pingshi. Advances in Inorganic All-solid-state Electrochromic Materials and Devices[J]. Journal of Inorganic Materials, 2020, 35(5): 511-524.
Fig. 1 Schematic diagram of chromogenic system (a) Al3+ based electrochromic device and its light modulation[11]; (b) Gate-controlled VO2 phase transition by tuning hydrogenating level for high-performance smart windows[12]; (c) Illustration of reversible photochromic reaction in PC-PCN (photochromic porous coordination network)[13]; (d) Schematic description of the adsorption and diffusion of a H atom along WOx based gasochromic thin film[14]
Category | EC Layer | Preparation method |
---|---|---|
Cathod coloration | WO3 | Magnetron sputtering[ |
MoO3 | Magnetron sputtering[ | |
Nb2O5 | Anodic oxidation[ | |
TiO2 | Hydrothermal[ | |
Anode coloring | NiOx | Magnetron sputtering |
IrO2 | Anodic oxidation[ | |
CoO2 | Hydrothermal[ | |
Prussian blue | Electrochemical deposition[ |
Table 1 Electrochromic materials and their deposition methods
Category | EC Layer | Preparation method |
---|---|---|
Cathod coloration | WO3 | Magnetron sputtering[ |
MoO3 | Magnetron sputtering[ | |
Nb2O5 | Anodic oxidation[ | |
TiO2 | Hydrothermal[ | |
Anode coloring | NiOx | Magnetron sputtering |
IrO2 | Anodic oxidation[ | |
CoO2 | Hydrothermal[ | |
Prussian blue | Electrochemical deposition[ |
Fig. 13 Ag grid/PEDOT hybrid flexible eletrode film[36] (a) Schematic illustration of the structure of the silver grid/PEDOT:PSS hybrid film; (b) Low- and high-magnification SEM image of the hybrid film; (c) EDS mapping of the hybrid film, demonstrating the uniform distribution of PEDOT:PSS across the whole film
Fig. 15 Transmittance and optical modulation changes of the WO3 on the silver grid/PEDOT:PSS hybrid film in the bleached and colored state[36] (a,b) Under repeated compressive bending; (c,d) Under repeated tensile bending. Curvature radius is 20 mm
Fig. 18 Electrochromic response of W18O49 nanowires under electrochemical insertion from one of the three different ions: Li+, Na+, and Al3+ in organic polycarbonate (PC) solvent using ClO4- as counter ion under ambient conditions[54] (a) CV curves (solid: the 1st cycle, broken: the 30th cycle) of the W18O49 nanowires film at a scan rate of 10 mV·s-1 in 1.0 mol/L PC-Al(ClO4)3, PC-LiClO4, PC-NaClO4; (b) In situ transmittance variation curves between colored and bleached state for W18O49 nanowires film in 1.0 mol/L PC-Al(ClO4)3, PC-LiClO4, and PC-NaClO4. Solid and broken lines are for the 1st and 30th cycle, respectively; (c) Full plot of the in situ transmittance variation in the three non-aqueous solutions, a total of 30 cycles; (d) In situ OD variation as a function of charge density monitored at wavelength of 633 nm in PC-LiClO4, PC-NaClO4, PC-Al(ClO4)3
Fig. 19 Electrochromic performance of WO3 films under various operations[58] (a) Comparison of optical response at 550 nm and for 1.5-4.0 V with and without constant loading current, inset shows a magnified view of the transmittance during 20 initial cycles at 10 mV·s-1; (b) CV data for different cycle numbers at 10 mV·s-1; (c) Trapped and extracted charge densities vs cycle number derived from CV data
Fig. 20 Electrochromic properties of NiO nanoparticles film with seed layer on ITO glass[61] (a) Transmittance spectra of the NiO nanoparticles film with seed layer on ITO glass in the bleached (0.2 V) and colored (0.6 V) states in the wavelength range of 300-900 nm, with inset showing the digital photos of NiO film growing on ITO glass with seed layer on bleached state and colored state; (b) Current response for NiO nanoparticles film at 0.2 and 0.6 V applications in 1 mol/L KOH for 30 s per step; (c) Corresponding in situ optical responses of NiO films for 30 s per step measured at 550 nm; (d) Cycle performance of the NiO nanoparticles film measured in 1 mol/L KOH for 5000 cycles
Fig. 21 LixNiOy all-solid-state ECDs based on gradient Li+ distribution and its performance (a) Schematic diagram of Li ions transportation in the ECD-1 for the coloration process; (b) Schematic diagram of Li ions transportation in the ECD-2 for the coloration process; (c) Comparison of the transmittance variety at 670 nm of LixNiOy-based ECD and NiOx-based ECD at 2.5 V bias; (d) Comparison of this work with recently reported all-solid-state ECDs
[1] |
GRANQVIST C G . Recent progress in thermochromics and electrochromics: a brief survey. Thin Solid Films, 2016,614:90-96.
DOI URL |
[2] | GRANQVIST C G . Oxide-based chromogenic coatings and devices for energy efficient fenestration: brief survey and update on thermochromics and electrochromics. Journal of Vacuum Science & Technology B, 2014,32(6):060801. |
[3] |
THAKUR V K, DING G Q, MA J , et al. Hybrid materials and polymer electrolytes for electrochromic device applications. Advanced Materials, 2012,24(30):4071-4096.
DOI URL |
[4] |
LIANG X, CHEN M, GUO S , et al. Dual-band modulation of visible and near-infrared light transmittance in an all-solution-processed hybrid micro-nano composite film. ACS Appl. Mater. Interfaces, 2017,9(46):40810-40819.
DOI URL PMID |
[5] |
LIANG X, CHEN M, WANG Q , et al. Active and passive modulation of solar light transmittance in a hybrid thermochromic soft-matter system for energy-saving smart window applications. Journal of Materials Chemistry C, 2018,6(26):7054-7062.
DOI URL |
[6] |
FENG W, ZHANG T R, LIU Y , et al. Novel hybrid inorganic- organic film based on the tungstophosphate acid-polyacrylamide system: photochromic behavior and mechanism. Journal of Materials Research, 2011,17(1):133-136.
DOI URL |
[7] |
LU N P, ZHANG P F, ZHANG Q H , et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature, 2017,546(7656):124-128.
DOI URL PMID |
[8] |
FENG W, ZOU L P, GAO G H , et al. Gasochromic smart window: optical and thermal properties, energy simulation and feasibility analysis. Solar Energy Materials and Solar Cells, 2016,144:316-323.
DOI URL |
[9] |
KALANUR S S, YOO I H, LEE Y A , et al. Green deposition of Pd nanoparticles on WO3 for optical, electronic and gasochromic hydrogen sensing applications. Sensors and Actuators B-Chemical, 2015,221:411-417.
DOI URL |
[10] |
GRANQVIST C G . Electrochromics for smart windows: oxide- based thin films and devices. Thin Solid Films, 2014,564:1-38.
DOI URL |
[11] | ZHANG S L, CAO S, ZHANG T R , et al. Al 3+ intercalation/ de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy & Environmental Science , 2018,11(10):2884-2892. |
[12] |
CHEN S, WANG Z W, REN H , et al. Gate-controlled VO2 phase transition for high-performance smart windows. Science Advances, 2019,5(3):8.
DOI URL PMID |
[13] |
PARK J, FENG D, YUAN S , et al. Photochromic metal-organic frameworks: reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. Engl., 2015,54(2):430-435.
DOI URL PMID |
[14] |
LEE Y A, KALANUR S S, SHIM G , et al. Highly sensitive gasochromic H2 sensing by nano-columnar WO3-Pd films with surface moisture. Sensors and Actuators B: Chemical, 2017,238:111-119.
DOI URL |
[15] |
ALAMER F A, OTLEY M T, DING Y J , et al. Solid-state high-throughput screening for color tuning of electrochromic polymers. Advanced Materials, 2013,25(43):6256-6260.
DOI URL PMID |
[16] | WANG K, WU H P, MENG Y N , et al. Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy & Environmental Science, 2012,5(8):8384-8389. |
[17] |
WANG J L, LU Y R, LI H H , et al. Large area co-assembly of nanowires for flexible transparent smart windows. Journal of the American Chemical Society, 2017,139(29):9921-9926.
DOI URL PMID |
[18] |
WANG J M, ZHANG L, YU L , et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun., 2014,5:4921.
DOI URL PMID |
[19] |
CAI G F, DARMAWAN P, CUI M Q , et al. Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. Nanoscale, 2016,8(1):348-357.
DOI URL PMID |
[20] |
BI Z J, LI X M, CHEN Y B , et al. Bi-functional flexible electrodes based on tungsten trioxide/zinc oxide nanocomposites for electrochromic and energy storage applications. Electrochimica Acta, 2017,227:61-68.
DOI URL |
[21] |
SHEN L X, DU L H, TAN S Z , et al. Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chemical Communications, 2016,52(37):6296-6299.
DOI URL PMID |
[22] |
XU T, WALTER E C, AGRAWAL A , et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nature Communications, 2016,7:10479.
DOI URL PMID |
[23] |
WANG M H, WEN J X, CHEN Y , et al. Nano-structured WO3 thin films deposited by glancing angle magnetron sputtering. Journal of Inorganic Materials, 2018,33(12):1303-1308.
DOI URL |
[24] |
USHA N, SIVAKUMAR R, SANJEEVIRAJA C . Structural, optical and electrochromic properties of Nb2O5:MoO3 (95:5, 90:10, and 85:15) thin films prepared by RF magnetron sputtering technique. Materials Letters, 2018,229:189-192.
DOI URL |
[25] |
SIVAKUMAR R, SHANTHAKUMARI K, THAYUMANAVAN A , et al. Molybdenum oxide (MoO3) thin film based electrochromic cell characterisation in 0.1 M LiClO4 center dot PC electrolyte. Surface Engineering, 2009,25(7):548-554.
DOI URL |
[26] |
ROSENFELD D, SCHMID P E, SZELES S , et al. Electrical transport properties of thin-film metal-oxide-metal Nb2O5 oxygen sensors. Sensors and Actuators B-Chemical, 1996,37(1/2):83-89.
DOI URL |
[27] |
CAI G F, TU J P, ZHOU D , et al. Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. Journal of Physical Chemistry C, 2013,117(31):15967-15975.
DOI URL |
[28] |
JUNG Y W, LEE J, TAK Y . Electrochromic mechanism of IrO2 prepared by pulsed anodic electrodeposition. Electrochemical and Solid State Letters, 2004,7(2):H5-H8.
DOI URL |
[29] |
SCHRADE M, FJELD H, FINSTAD T G , et al. Electronic transport properties of Ca2CoO3-delta (q) CoO2. Journal of Physical Chemistry C, 2014,118(6):2908-2918.
DOI URL |
[30] |
DELONGCHAMP D M, HAMMOND P T . High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Advanced Functional Materials, 2004,14(3):224-232.
DOI URL |
[31] |
LIN F, BULT J B, NANAYAKKARA S , et al. Graphene as an efficient interfacial layer for electrochromic devices. ACS Applied Materials & Interfaces, 2015,7(21):11330-11336.
DOI URL PMID |
[32] |
LI C P, LIN F, RICHARDS R M , et al. The influence of Sol-Gel processing on the electrochromic properties of mesoporous WO3 films produced by ultrasonic spray deposition. Solar Energy Materials and Solar Cells, 2014,121:163-170.
DOI URL |
[33] | XIA X H, TU J P, ZHANG J , et al. Cobalt oxide ordered bowl-like array films prepared by electrodeposition through monolayer polystyrene sphere template and electrochromic properties. ACS Applied Materials & Interfaces, 2010,2(1):186-192. |
[34] |
FIZ R, APPEL L, GUTIERREZ-PARDO A , et al. Electrochemical energy storage applications of CVD grown niobium oxide thin films. ACS Applied Materials & Interfaces, 2016,8(33):21423-21430.
DOI URL PMID |
[35] | XU Z J, LI W F, HUANG J N , et al. Controllable and large-scale fabrication of flexible ITO-free electrochromic devices by crackle pattern technology. Journal of Materials Chemistry A, 2018,6(40):19584-19589. |
[36] | CAI G F, DARMAWAN P, CUI M Q , et al. Highly stable transparent conductive silver grid/pedot:pss electrodes for integrated bifunctional flexible electrochromic supercapacitors. Advanced Energy Materials, 2016,6(4):1501882. |
[37] |
YE T, XIANG Y, JI H , et al. Electrodeposition-based electrochromic devices with reversible three-state optical transformation by using titanium dioxide nanoparticle modified FTO electrode. RSC Advances, 2016,6(37):30769-30775.
DOI URL PMID |
[38] |
ZHOU Y L, DIAO X G, DONG G B , et al. Enhanced transmittance modulation of ITO/NiOx/ZrO2:H/WO3/ITO electrochromic devices. Ionics, 2016,22(1):25-32.
DOI URL |
[39] |
ZHANG S M, CHEN Y H, LIU H , et al. Room-temperature- formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics. Advanced Materials, 2019, DOI: 10.1002/adma.201904752.
DOI URL PMID |
[40] |
LING H, LIU L, LEE P S , et al. Layer-by-layer assembly of PEDOT:PSS and WO3 nanoparticles: enhanced electrochromic coloration efficiency and mechanism studies by scanning electrochemical microscopy. Electrochimica Acta, 2015,174:57-65.
DOI URL |
[41] |
QU H Y, ZHANG X, ZHANG H C , et al. Highly robust and flexible WO3. 2H2O/PEDOT films for improved electrochromic performance in near-infrared region. Solar Energy Materials and Solar Cells, 2017,163:23-30.
DOI URL |
[42] |
LIU S P, WANG W . Improved electrochromic performances of WO3-based thin films via addition of CNTs. Journal of Sol-Gel Science and Technology, 2016,80(2):480-486.
DOI URL |
[43] |
LI Q, LI K R, FAN H W , et al. Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers. Journal of Materials Chemistry C, 2017,5(44):11448-11453.
DOI URL |
[44] |
SINGH R, THARION J, MURUGAN S , et al. ITO-free solution- processed flexible electrochromic devices based on PEDOT:PSS as transparent conducting electrode. ACS Applied Materials & Interfaces, 2017,9(23):19427-19435.
DOI URL PMID |
[45] |
WEN H L, ZHI F, YANG Q B , et al. Enhanced electrochromic properties by using a CeO2 modified TiO2 nanotube array transparent counter electrode. Journal of Inorganic Materials, 2012,27(1):74-78.
DOI URL |
[46] |
GHICOV A, TSUCHIYA H, HAHN R , et al. TiO2 nanotubes: H + insertion and strong electrochromic effects. Electrochemistry Communications , 2006,8(4):528-532.
DOI URL |
[47] |
WANG J M, KHOO E, LEE P S , et al. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte. Journal of Physical Chemistry C, 2009,113(22):9655-9658.
DOI URL |
[48] |
TONG Z, LIU S, LI X , et al. Achieving rapid Li-ion insertion kinetics in TiO2 mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows. Nanoscale, 2018,10(7):3254-3261.
DOI URL PMID |
[49] |
PATEL K J, PANCHAL C J, DESAI M S , et al. An investigation of the insertion of the cations H +, Na +, K + on the electrochromic properties of the thermally evaporated WO3 thin films grown at different substrate temperatures. Materials Chemistry and Physics , 2010,124(1):884-890.
DOI URL |
[50] | SIAN T S, REDDY G B . Effect of adsorbed water vapor on Mg intercalation in electrochromic a-MoO3 films. Electrochimica Acta, 2004,49(28):5223-5226. |
[51] |
LI K R, SHAO Y L, LIU S Y , et al. Aluminum-ion-intercalation supercapacitors with ultrahigh areal capacitance and highly enhanced cycling stability: power supply for flexible electrochromic devices. Small, 2017,13(19):1700380.
DOI URL PMID |
[52] |
DONG D M, WANG W W, ROUGIER A , et al. Life-cycling and uncovering cation-trapping evidence of a monolithic inorganic electrochromic device: glass/ITO/WO3/LiTaO3/NiO/ITO. Nanoscale, 2018,10(35):16521-16530.
DOI URL PMID |
[53] | LIU Q R, DONG G B, CHEN Q Q , et al. Charge-transfer kinetics and cyclic properties of inorganic all-solid-state electrochromic device with remarkably improved optical memory. Solar Energy Materials and Solar Cells, 2018,174:545-553. |
[54] |
TIAN Y Y, ZHANG W K, CONG S , et al. Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism. Advanced Functional Materials, 2015,25(36):5833-5839.
DOI URL PMID |
[55] | CHEN Y, XU Z, SUN J L . Present situation and future industrialization of large area intelligent electrochromic glass. Functional Materials, 2013,44(17):2441-2446. |
[56] | PENG M D, ZHANG Y Z, SONG L X , et al. Structure and electrochromic properties of titanium-doped WO3 thin film by sputtering. Journal of Inorganic Materials, 2017,32(3):287-292. |
[57] | CAI G F, TU J P, ZHOU D , et al. Dual electrochromic film based on WO3/polyaniline core/shell nanowire array.Solar Energy Materials and Solar Cells 2014, 122:51-58. |
[58] |
WEN R T, GRANQVIST C G, NIKLASSON G A . Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nature Materials, 2015,14(10):996.
DOI URL PMID |
[59] | BOGATI S, BASNET R, GEORG A . Iridium oxide catalyst for hybrid electrochromic device based on tetramethylthiourea (TMTU) redox electrolyte. Solar Energy Materials and Solar Cells, 2019,189:206-213. |
[60] | YOSHINO T, BABA N, ARAI K . Preparation of electrochromic irox thin film of periodic reverse electrolysis of sulfatoiridium complex solution. Journal of the Electrochemical Society, 1987,134(8B):440. |
[61] | CAI G F, WANG X, CUI M Q , et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy, 2015,12:258-267. |
[62] |
LIU X X, ZHOU A, DOU Y B , et al. Ultrafast switching of an electrochromic device based on layered double hydroxide/Prussian blue multilayered films. Nanoscale, 2015,7(40):17088-17095.
DOI URL PMID |
[63] |
CHEN Y B, BI Z J, LI X M , et al. High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures. Electrochimica Acta, 2017,224:534-540.
DOI URL |
[64] | HU C W, KAWAMOTO T, TANAKA H , et al. Water processable Prussian blue-polyaniline: polystyrene sulfonate nanocomposite (PB-PANI:PSS) for multi-color electrochromic applications. Journal of Materials Chemistry C, 2016,4(43):10293-10300. |
[65] |
LI F, MA D Y, QIAN J H , et al. One-step hydrothermal growth and electrochromic properties of highly stable Prussian green film and device. Solar Energy Materials and Solar Cells, 2019,192:103-108.
DOI URL |
[66] | QIAN J H, MA D Y, XU Z P , et al. Electrochromic properties of hydrothermally grown Prussian blue film and device. Solar Energy Materials and Solar Cells, 2018,177:9-14. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||