Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (1): 8-18.DOI: 10.15541/jim20190282
Special Issue: MAX相和MXene材料; 二维材料; 功能陶瓷论文精选(二); MXene材料专辑(2020~2021); 【虚拟专辑】层状MAX,MXene及其他二维材料
Previous Articles Next Articles
YANG Yi-Na1,2,WANG Ran-Ran1,SUN Jing1()
Received:
2019-06-11
Revised:
2019-07-05
Published:
2020-01-20
Online:
2019-10-23
About author:
YANG Yi-Na (1992-), female, PhD candidate. E-mail:yangyina@student.sic.ac.cn
Supported by:
CLC Number:
YANG Yi-Na, WANG Ran-Ran, SUN Jing. MXenes in Flexible Force Sensitive Sensors: a Review[J]. Journal of Inorganic Materials, 2020, 35(1): 8-18.
Fig. 3 (a) Schematic of the fabrication process for the bioinspired Ti3C2Tx-AgNW-PDA/Ni2+ sensor fabricated through the screen-printing method; (b) Schematic illustration of the structures for the “brick” materials (Ti3C2Tx and AgNWs) and “mortar” material (PDA/Ni2+); (c) Schematic illustration of the Ti3C2Tx-AgNW-PDA/Ni2+ sensor based on the “brick-and-mortar” architecture[56]
Fig. 4 Electromechanical properties of M-hydrogel composite and mechanisms Electrical response of M-hydrogel to (a) tensile strain and (b) compressive strain, with insets showing the corresponding GFs; Scanning electron microscopy (SEM) images of M-hydrogel surface (c) before and (d) after stretching; (e-f) Schematic illustration for the mechanism of the electromechanical responses from M-hydrogel[58]
Fig. 5 (a) Schematic diagram of the HF18 h-d20 min-Ti3C2Tx conductive film at various stretching states during the first stretching-releasing cycle. Top-view SEM images of (b) HF6 h-d3 h-Ti3C2Tx-, (c) TMA-Ti3C2Tx-, and (d) HF18 h-d20 min-Ti3C2Tx-based strain sensors in the maximum tensile state[15]
[1] |
BARLION A A, PARK W T, MALLON J R , et al. Review: semiconductor piezoresistance for microsystems. Proc. IEEE Inst. Electr. Electron. Eng., 2009,97(3):513-552.
DOI URL PMID |
[2] |
CHORTOS A, LIU J, BAO Z . Pursuing prosthetic electronic skin. Nat. Mater., 2016,15(9):937-950.
DOI URL PMID |
[3] |
AMJADI M, KYUNG K U, PARK I , et al. Stretchable, skin- mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater., 2016,26(11):1678-1698.
DOI URL |
[4] |
NIE P, WANG R, XU X , et al. High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks. ACS Appl. Mater. Interfaces, 2017,9(17):14911-14919.
DOI URL PMID |
[5] |
XU X, WANG R, NIE P , et al. Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl. Mater. Interfaces, 2017,9(16):14273-14280.
DOI URL PMID |
[6] |
BAE G Y, PARK S, KIM D , et al. Linearly and highly pressure- sensitive electronic skin based on a bioinspired hierarchical structural array. Adv. Mater., 2016,28(26):5300-5306.
DOI URL PMID |
[7] |
PAN L, CHORTOS A, YU G , et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun., 2014,5:3002.
DOI URL PMID |
[8] |
TRUNG T Q, LEE N E . Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater., 2016,28(22):4338-4372.
DOI URL PMID |
[9] |
GONG S, SCHWALB W, WANG Y , et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun., 2014,5:3132.
DOI URL PMID |
[10] |
JIAN M, XIA K, WANG Q , et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater., 2017,27(9):1606066.
DOI URL |
[11] |
KIM D H, XIAO J, SONG J , et al. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater., 2010,22(19):2108-2124.
DOI URL PMID |
[12] |
SHENG L, LIANG Y, JIANG L , et al . Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater., 2015,25(41):6545-6551.
DOI URL |
[13] |
KIM J, LEE S W, KIM M H , et al. Zigzag-shaped silver nanoplates: synthesis via ostwald ripening and their application in highly sensitive strain sensors. ACS Appl. Mater. Interfaces, 2018,10(45):39134-39143.
DOI URL PMID |
[14] |
BOLAND CONOR S, KHAN UMAR, BACKES CLAUDAI , et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene rubber composites. ACS Nano, 2014,8(9):8819-8830.
DOI URL PMID |
[15] |
YANG Y, SHI L, CAO Z , et al. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx( MXene) nanoparticle- nanosheet hybrid network. Adv Funct. Mater., 2019,29(14):1807882.
DOI URL |
[16] |
SHI X, LIU S, SUN Y , et al. Lowering internal friction of 0D-1D-2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv. Funct. Mater., 2018,28(22):1800850.
DOI URL |
[17] |
PARK J, LEE Y, HONG J , et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano, 2014,8(12):12020-12029.
DOI URL PMID |
[18] |
BOLAND C, KHAN U, RYAN G , et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016,354(6317):1257-1260.
DOI URL PMID |
[19] |
PARK J, LEE Y, HONG J , et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 2014,8(5):4689-4697.
DOI URL PMID |
[20] |
COHEN D J, MITRA D, PETERSON K , et al. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett., 2012,12(4):1821-1825.
DOI URL PMID |
[21] |
PANG C, LEE G Y, KIM T I , et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater., 2012,11(9):795-801.
DOI URL PMID |
[22] |
CHENG Y, WANG R, SUN J , et al. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater., 2015,27(45):7365-7371.
DOI URL PMID |
[23] |
MANNSFELD S C, TEE B C, STOLTENBERG R , et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater., 2010,9(10):859-864.
DOI URL PMID |
[24] |
WANG X, GU Y, XIONG Z , et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater., 2014,26(9):1336-1342.
DOI URL |
[25] |
CAO Z, WANG R, HE T , et al. Interface-controlled conductive fibers for wearable strain sensors and stretchable conducting wires. ACS Appl. Mater. Interfaces, 2018,10(16):14087-14096.
DOI URL PMID |
[26] |
LEE J, KIM S, LEE J , et al. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale, 2014,6(20):11932-11939.
DOI URL |
[27] |
BOLAND C S, KHAN U, BENAMUR H , et al. Surface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensors. Nanoscale, 2017,9(46):18507-18515.
DOI URL PMID |
[28] |
NUR R, MATSUHISA N, JIANG Z , et al. A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films. Nano Lett., 2018,18(9):5610-5617.
DOI URL PMID |
[29] |
WANG Y, WANG Y, YANG Y . Graphene-polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Adv. Energy Mater., 2018,8(22):1800961.
DOI URL |
[30] |
LEE J, PYO S, KWON D S , et al. Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes. Small, 2019,15(12):1805120.
DOI URL PMID |
[31] |
ZHOU J, XU X, XIN Y , et al. Coaxial thermoplastic elastomer- wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater., 2018,28(16):1705591.
DOI URL PMID |
[32] |
KIM KH, JANG NS, HA SH , et al. Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films. Small, 2018,14(14):1704232.
DOI URL PMID |
[33] |
OH J, YANG J, KIM J , et al. Pressure insensitive strain sensor with facile solution-based process for tactile sensing applications. ACS Nano, 2018,12(8):7546-7553.
DOI URL PMID |
[34] |
LI X, ZHANG R, YU W , et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep., 2012,2:870.
DOI URL PMID |
[35] |
NAGUIB M, KURTOGLU M, PRESSER V , et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011,23(37):4248-4253.
DOI URL PMID |
[36] |
NAGUIB M, JOSHUA C, PRESSER V , et al. Two-dimensional transition metal carbides. ACS Nano, 2012,6(2):1322-1331.
DOI URL PMID |
[37] |
NAGUIB M, MOCHALIN V N, BARSOUM M W , et al. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater, 2014,26(7):992-1005.
DOI URL |
[38] |
LEI J, ZHANG X, ZHOU Z . Recent advances in MXene: preparation, properties, and applications. Frontiers of Physics, 2015,10(3):276-286.
DOI URL PMID |
[39] |
WANG H, CAO H, ZHANG J . Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 2017,32(6):561-570.
DOI URL |
[40] |
XIU L, WANG Z, YU M , et al. Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano, 2018,12(8):8017-8028.
DOI URL PMID |
[41] |
NAGUIB M, GOGOTSI Y . Synthesis of two-dimensional materials by selective extraction. ACC Chem. Res., 2015,48(1):128-135.
DOI URL PMID |
[42] |
NAGUIB M, UNOCIC R R, ARMSTRONG B L , et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes". Dalton Trans., 2015,44(20):9353-9358.
DOI URL PMID |
[43] |
GHIDIU M, LUKATSKAYA M R, ZHAO M Q , et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature, 2014,516(7529):78-81.
DOI URL |
[44] |
MASHTALIR O, NAGUIB M, DYATKIN B , et al. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater. Chem. Phys., 2013,139(1):147-152.
DOI URL |
[45] |
ENYASHIN A N, IVANOVSKII A L . Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes. Comput. Theor. Chem., 2012,989:27-32.
DOI URL |
[46] |
ANASARI B, XIE Y, BEDAGHI M , et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 2015,9(10):9507-9516.
DOI URL PMID |
[47] |
KHAZAEI M, ARAI M, SASAKI T , et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater., 2013,23(17):2185-2192.
DOI URL |
[48] |
WU F, JIANG Y, YE Z , et al. A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. A, 2019,7(3):1315-1322.
DOI URL |
[49] |
XIAO Z, YANG Z, LI Z , et al. Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano, 2019,13(3):3404-3412.
DOI URL PMID |
[50] |
LUO J, WANG C, WANG H , et al. Pillared MXene with ultralarge iInterlayer spacing as a stable matrix for high performance sodium metal anodes. Adv. Funct. Mater., 2019,29:1805946.
DOI URL |
[51] |
PENG Y, AKUZUM B, KURRA N , et al. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci., 2016,9(9):2847-2854.
DOI URL |
[52] |
PERSSON I, HALIM J, LIND H , et al. 2D Transition metal carbides (MXenes) for carbon capture. Adv. Mater., 2019,31(2):1805472.
DOI URL PMID |
[53] |
LIU J, ZHANG H, SUN R , et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic- interference shielding. Adv Mater, 2017,29(38):1702367.
DOI URL PMID |
[54] |
FAISAL S, CHRISTINE B, ANASORI B , et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016,353(6304):1137-1140.
DOI URL PMID |
[55] |
CAI Y, SHEN J, GE G , et al. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano, 2018,12(1):56-62.
DOI URL PMID |
[56] |
SHI X, WANG H, XIE X , et al. Bioinspired ultrasensitive and stretchable MXene-based strain sensor via nacre-mimetic microscale "brick-and-mortar" architecture. ACS Nano, 2019,13(1):649-659.
DOI URL PMID |
[57] |
HYOSUNG AN, TOUSEEF HABIB, SMIT SHAH , et al. Surface- agnostic highly stretchable Surface- agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 2018, 4(3): eaaq0118
DOI URL PMID |
[58] |
ZHANG Y, LEE K, ANJUM D , et al. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv., 2018, 4(6): eaat0098.
DOI URL PMID |
[59] |
MA Y, LIU N, LI L , et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun., 2017,8:1207.
DOI URL PMID |
[60] |
MA Y, YUE Y, ZHANG H , et al. 3D Synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano, 2018,12(4):3209-3216.
DOI URL PMID |
[61] |
LIU J, ZHANG H, XIE X , et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small, 2018,14(45):1802479.
DOI URL PMID |
[62] |
ZHUO H, HU Y, CHEN Z , et al. A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors. J. Mater. Chem. A, 2019,7(14):8092-8100.
DOI URL |
[63] |
CHEN Z, HU Y, ZHUO H , et al. Compressible, elastic, and pressure- sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater., 2019,31(9):3301-3312.
DOI URL |
[64] |
YUE Y, LIU N, LIU W , et al. 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor. Nano Energy, 2018,50:79-87.
DOI URL |
[65] |
LI X, LI Y, LI X , et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. J. Colloid Interface Sci., 2019,542:54-62.
DOI URL PMID |
[66] |
GUO Y, ZHONG M, FANG Z , et al. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett., 2019,19(2):1143-1150.
DOI URL PMID |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||