Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (11): 1145-1155.DOI: 10.15541/jim20190045
Previous Articles Next Articles
CAO Xun,CAO Cui-Cui,SUN Guang-Yao,JIN Ping-Shi
Received:
2019-01-25
Revised:
2019-03-18
Published:
2019-11-20
Online:
2019-05-29
Supported by:
CLC Number:
CAO Xun, CAO Cui-Cui, SUN Guang-Yao, JIN Ping-Shi. Recent Progress of Single-phase White Light-emitting Diodes Phosphors[J]. Journal of Inorganic Materials, 2019, 34(11): 1145-1155.
Fig. 1 Development of WLED (a) InGaN蓝光芯片/YAG:Ce黄色荧光粉白光LED; (b) RGB混合荧光粉白光LED; (c)单基质白光LED[4] (a) blue light emitting InGaN chips/YAG:Ce yellow light emitting phosphor WLED; (b) WLED based on red-green-blue (RGB) emitting color phosphors; (c) WLED based on single-phase phosphor[4,5,6]
Fig. 3 EL spectra (a) of the white LED fabricated by using phosphors and 400 nm GaN-based LED chips, CIE (x, y) chromaticity diagram (b) with insets showing digital images of the fabricated white LED[22]
Fig. 4 (a) PLE and PL spectra of as-synthesized Ba3Y1.3Eu0.7B6O15 phosphors (λem=?593?nm and λex=?393?nm) at room temperature, (b) PL spectra of Ba3Y2-xEuxB6O15 (x?=?0.1, 0.3, 0.5, 0.6, 0.7, 0.9 and 1.0) phosphors with the inset illustrating the variation of the PL intensity (593?nm) on the concentration of Eu3+[23]
Phosphor | UV/nm | Emission | CIE(x, y) | Ref. |
---|---|---|---|---|
BaSrMg(PO4)2: Eu2+ | 385 | 460 nm, 550 nm | (0.29, 0.35) | [25] |
Sr3MgSi2O8: Eu2+ | 375 | 470 nm, 570 nm | (0.32, 0.33) | [26] |
LaOF: Eu3+ | 274 | All the emissions from Eu3+ | (0.29, 0.34) | [27] |
NaYF4: Eu3+ | 397 | 5DJ-7FJ’ (J,J’=0,1,2,3,4) | (0.29, 0.33) | [28] |
CaIn2O4: Eu3+ | 397 | - | (0.32, 0.32) | [29] |
BaY2ZnO5: Dy3+ | 355/351 | 489 nm, 579 nm | (0.32, 0.39) | [30] |
Table 1 Summary of single activator ion doped systems for single-phase white-emitting phosphors
Phosphor | UV/nm | Emission | CIE(x, y) | Ref. |
---|---|---|---|---|
BaSrMg(PO4)2: Eu2+ | 385 | 460 nm, 550 nm | (0.29, 0.35) | [25] |
Sr3MgSi2O8: Eu2+ | 375 | 470 nm, 570 nm | (0.32, 0.33) | [26] |
LaOF: Eu3+ | 274 | All the emissions from Eu3+ | (0.29, 0.34) | [27] |
NaYF4: Eu3+ | 397 | 5DJ-7FJ’ (J,J’=0,1,2,3,4) | (0.29, 0.33) | [28] |
CaIn2O4: Eu3+ | 397 | - | (0.32, 0.32) | [29] |
BaY2ZnO5: Dy3+ | 355/351 | 489 nm, 579 nm | (0.32, 0.39) | [30] |
Fig. 8 PL spectra of the CNPO:0.01Eu2+, nMn2+(n = 0, 0.1, 0.2, and 0.4) under the excitations at 276 (a), 320 (b), and 355 nm (c), respectively; The photos of the phosphors (d) excited by 365 nm UV lamp (bottom row), and photos obtained in daylight environment (upper row). The photos 1-4 correspond to n=0, 0.1, 0.2, and 0.4, respectively[33]
Representative examples | Excitation/nm | Emission | CIE(x,y) | Ref. |
---|---|---|---|---|
Ca9Gd(PO4)7: Eu2+, Mn2+ | 380 | Eu2+: blue-greenish emission band (peaking at 494 nm) + Mn2+: red emission band (peaking at 652 nm) | (0.326, 0.328) | [34] |
CaAl2Si2O8: Eu2+, Mn2+ | 354 | Eu2+: a broad band centered at 425 nm + Mn2+: a broad band centered at 568 nm | (0.33, 0.31) | [35] |
MgY4Si3O13: Ce3+, Mn2+ | 328 | Ce3+: an asymmetric broad band peaking at 455 nm + Mn2+: orange-red emission band at 587 nm | (0.36, 0.26) | [36] |
Ca3Sc2Si3O12: Ce3+, Mn2+, Y3+ | 450 | Ce3+: a green emission band peaked at 505 nm + Mn2+: a yellow band at around 574 nm and a red band at around 680 nm | (0.30, 0.33) | [37] |
Sr2SiO4: Ce3+, Eu2+ | 354 | Ce3+: an asymmetric blue emission + Eu2+: a broad band covering the blue-green to yellow region | - | [38] |
Sr3B2O6: Ce3+, Eu2+ | 351 | Ce3+: a broad asymmetric blue emission band centering at 434 nm + Eu2+: a broad yellow orange emission band centering at 574 nm | (0.31, 0.24) | [39] |
Ca4Y6(SiO4)6O: Ce3+, Tb3+ | 352 | Ce3+: a blue band centered at 421 nm + Tb3+: characteristic emission lines ranging from 470 to 650 nm with yellow-greenish emission | (0.278, 0.353) | [40] |
Ca2Al2SiO7: Ce3+, Tb3+ | 352 | Ce3+: a blue band centered at 419 nm + Tb3+: characteristic emission lines ranging from 470 to 650 nm with yellow-greenish emission | (0.316, 0.336) | [41] |
Sr2Al2SiO7: Ce3+, Dy3+ | 335 | Ce3+: a blue emission band at 408 nm + Dy3+: the emission bands at 491 nm and 573 nm | - | [42] |
12CaO·7Al2O3: Ce3+, Dy3+ | 362 | Ce3+: a broad band centered at 430 nm + Dy3+: two narrow bands centered at 476 nm and 576 nm | (0.324, 0.323) | [43] |
Table 2 Summary of representative multi-ion doped single-phased white-emitting phosphors
Representative examples | Excitation/nm | Emission | CIE(x,y) | Ref. |
---|---|---|---|---|
Ca9Gd(PO4)7: Eu2+, Mn2+ | 380 | Eu2+: blue-greenish emission band (peaking at 494 nm) + Mn2+: red emission band (peaking at 652 nm) | (0.326, 0.328) | [34] |
CaAl2Si2O8: Eu2+, Mn2+ | 354 | Eu2+: a broad band centered at 425 nm + Mn2+: a broad band centered at 568 nm | (0.33, 0.31) | [35] |
MgY4Si3O13: Ce3+, Mn2+ | 328 | Ce3+: an asymmetric broad band peaking at 455 nm + Mn2+: orange-red emission band at 587 nm | (0.36, 0.26) | [36] |
Ca3Sc2Si3O12: Ce3+, Mn2+, Y3+ | 450 | Ce3+: a green emission band peaked at 505 nm + Mn2+: a yellow band at around 574 nm and a red band at around 680 nm | (0.30, 0.33) | [37] |
Sr2SiO4: Ce3+, Eu2+ | 354 | Ce3+: an asymmetric blue emission + Eu2+: a broad band covering the blue-green to yellow region | - | [38] |
Sr3B2O6: Ce3+, Eu2+ | 351 | Ce3+: a broad asymmetric blue emission band centering at 434 nm + Eu2+: a broad yellow orange emission band centering at 574 nm | (0.31, 0.24) | [39] |
Ca4Y6(SiO4)6O: Ce3+, Tb3+ | 352 | Ce3+: a blue band centered at 421 nm + Tb3+: characteristic emission lines ranging from 470 to 650 nm with yellow-greenish emission | (0.278, 0.353) | [40] |
Ca2Al2SiO7: Ce3+, Tb3+ | 352 | Ce3+: a blue band centered at 419 nm + Tb3+: characteristic emission lines ranging from 470 to 650 nm with yellow-greenish emission | (0.316, 0.336) | [41] |
Sr2Al2SiO7: Ce3+, Dy3+ | 335 | Ce3+: a blue emission band at 408 nm + Dy3+: the emission bands at 491 nm and 573 nm | - | [42] |
12CaO·7Al2O3: Ce3+, Dy3+ | 362 | Ce3+: a broad band centered at 430 nm + Dy3+: two narrow bands centered at 476 nm and 576 nm | (0.324, 0.323) | [43] |
Fig. 9 Electroluminescence spectra of the WLED operated under various currents of 20 to 60 mA. Inset: the variation in CIE chromaticity coordinates of the WLED under various currents[57]
Sample | KVO3 | RbVO3 | CsVO3 | Mg3V2O8 | Zn3V2O8 |
---|---|---|---|---|---|
η/% | 4 | 79 | 87 | 6 | 52 |
CIE(x, y) | 0.362, 0.453 | 0.316, 0.424 | 0.306, 0.418 | 0.449, 0.475 | 0.432, 0.478 |
CCT/K | 4859 | 5993 | 6334 | 3318 | 3583 |
Table 3 Luminescence property of AVO3 (A=K, Ru, Cs) and M3V2O8 (M=Mg, Zn)[60]
Sample | KVO3 | RbVO3 | CsVO3 | Mg3V2O8 | Zn3V2O8 |
---|---|---|---|---|---|
η/% | 4 | 79 | 87 | 6 | 52 |
CIE(x, y) | 0.362, 0.453 | 0.316, 0.424 | 0.306, 0.418 | 0.449, 0.475 | 0.432, 0.478 |
CCT/K | 4859 | 5993 | 6334 | 3318 | 3583 |
AVO3 phase | PLE peak/nm | PL peak/nm | FWHM/nm | CIE(x, y) | CCT/K |
---|---|---|---|---|---|
CsVO3 (W) | 356 | 487 | 151 | (0.2421, 0.3283) | 12050 |
CsVO3 (Y) | 342 | 503 | 138 | (0.2671, 0.3855) | 8444 |
RbVO3 (W) | 357 | 491 | 149 | (0.2462, 0.3379) | 11152 |
RbVO3 (R) | 342 | 510 | 149 | (0.2797, 0.3960) | 7700 |
Table 4 Optical property of heterogeneous AVO3[63]
AVO3 phase | PLE peak/nm | PL peak/nm | FWHM/nm | CIE(x, y) | CCT/K |
---|---|---|---|---|---|
CsVO3 (W) | 356 | 487 | 151 | (0.2421, 0.3283) | 12050 |
CsVO3 (Y) | 342 | 503 | 138 | (0.2671, 0.3855) | 8444 |
RbVO3 (W) | 357 | 491 | 149 | (0.2462, 0.3379) | 11152 |
RbVO3 (R) | 342 | 510 | 149 | (0.2797, 0.3960) | 7700 |
Fig. 11 Controllable photoluminescence (a) Optical images of solution and film samples with different bandgaps under a 365 nm UV lamp; (b) Optical absorption; (c) Photoluminescence spectra of IPQDs with different composition[65]
Phosphors | Advantages | Disadvantages | |
---|---|---|---|
Rare earth ion doped system | Single activator ion doped systems | High quantum conversion efficiency; wide emission spectrum range | Low color rendering index; high price; harmful to the environment |
Multi-ions co-doping systems | |||
Rare earth ion free systems | Semiconductor nanocrystal | Large absorption coefficient; wide excitation and emission band; high quantum yield; easy to be combined with packaging materials | Expensive raw materials; complex synthesis process; poor stability |
Vanadate | High luminous efficiency; low preparation temperature | High color temperature; low intensity in red region | |
Perovskite | Optical band gap adjustable; high quantum conversion efficiency | Pollution from soluble heavy metal Pb |
Table 5 Advantages and disadvantages of single-phase WLEDs phosphors
Phosphors | Advantages | Disadvantages | |
---|---|---|---|
Rare earth ion doped system | Single activator ion doped systems | High quantum conversion efficiency; wide emission spectrum range | Low color rendering index; high price; harmful to the environment |
Multi-ions co-doping systems | |||
Rare earth ion free systems | Semiconductor nanocrystal | Large absorption coefficient; wide excitation and emission band; high quantum yield; easy to be combined with packaging materials | Expensive raw materials; complex synthesis process; poor stability |
Vanadate | High luminous efficiency; low preparation temperature | High color temperature; low intensity in red region | |
Perovskite | Optical band gap adjustable; high quantum conversion efficiency | Pollution from soluble heavy metal Pb |
[1] | LIU X Y . Development perspective of LED and backlight. Lamps & Lighting, 2008,12(4):14-17. |
[2] | KIM J S, JEON P E, CHOI J C , et al. Emission color variation of M2SiO4:Eu 2+(M=Ba, Sr, Ca) phosphor for light-emitting diode. Solid State Commun. 2005,133(3):187-190. |
[3] | KUO C H, SHEU J K, CHANG S J , et al. n-UV + blue/green/red white light emitting diode lamps. Jpn. J. Appl. Phys., 2003,42(4B):2284-2287. |
[4] | CHO J, PARK J H, KIM J K , et al. White light-emitting diodes history, progress, and future. Laser Photonics. Rev., 2017,11(2):1600147. |
[5] | ZHONG J, CGEN D, CHEN X , et al. Efficient rare-earth free red-emitting Ga2YSbO6: Mn 4+, M (M=Li +, Na +, K +, Mg 2+) phosphors for white light emitting diodes. Dalton Transactions, 2018,47:6528-6537. |
[6] | PAVITRA E, SEETA RAMA RAJU G, KRISHNA B , et al. Evolution of highly efficient rare-earth free Cs(1-x)RbxVO3 phosphors as a single emitting component for NUV-based white LEDs. J. Mater. Chem. C, 2018,6(46):12746-12757. |
[7] | LIN C C, TANG Y S, HU S F , et al. KBaPO4:Ln (Ln = Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes. J. Lumin., 2009,129(12):1682-1684. |
[8] | LIN C C, LIU R S . Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett., 2011,2(11):1268-1277. |
[9] | YE S, XIAO F, PAN X Y , et al. Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng., R, 2010,71(1):1-34. |
[10] | MUTHU S, SCHUUMANS F J P, PASHLEY M D S . Red, green, and blue leds for white light illumination. IEEE J. Sel. Top. Quantum Electronics, 2002,8(2):333-338. |
[11] | CRAWFORD M H . LEDs for solid state lighting: performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electronics, 2009,15(4):1028-1040. |
[12] | SHANG M M, LI C, LIN J . How to produce white light in a single- phase host? Chem. Soc. Rev. 2014,43(5):1372-1386. |
[13] | LI G G, TIAN Y, ZHAO Y , et al. Recent progress in luminescence tuning of Ce 3+ and Eu 2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev, 2015,44(23):8688-8713. |
[14] | XIA Z G, MEJJERINK A . Ce 3+-doped garnet phosphors: composition modification, luminescence properties and applications . Chem. Soc. Rev., 2017,46(1):275-299. |
[15] | KO M J, YOON H C, YOO H Y , et al. Highly efficient green Zn-Ag-In-S/Zn-In-S/Zns qds by a strong exothermic reaction for down-converted green and tripackage white LEDs. Adv. Funct. Mater., 2017,27(4):1602638. |
[16] | CUI Y J, YUE Y F, QIAN G D , et al. Luminescent functional metal-organic frameworks. Chem. Rev., 2012,112(2):1126-1162. |
[17] | HAIDER G, USMAN M, CHEN T P , et al. Electrically driven white light emission from intrinsic metal-organic framework. ACS Nano, 2016,10(9):8366-8375. |
[18] | PATHAK S, SAKAI N, RIVAROLA F W R , et al. Perovskite crystals for tunable white light emission. Chem. Mater., 2015,27(23):8066-8075. |
[19] | HE H, SONG X F, FU R L , et al. Crystal structure and luminescence of Li2Ca0.7Sr0.3SiO4:Eu 2+ and its application in multi-phosphor converted white LEDs. J. Alloys Compd, 2010,493(1/2):401-405. |
[20] | WANG Z J, YANG Z P, GUO Q L , et al. Luminescence characteristics of Eu 2+ activated Ca2SiO4, Sr2SiO4 and Ba2SiO4 phosphors for white LEDs. Chin. Phys. B, 2009,18(5):2068-2071. |
[21] | KIM J S, PARK Y H, KIM S M , et al. Temperature-dependent emission spectra of M2SiO4:Eu 2+(M=Ca, Sr, Ba) phosphors for green and greenish white LEDs. Solid State Commun., 2005,133(7):445-448. |
[22] | KWON B J, GANDHI S, WOO H J , et al. Optical properties of CaSrSiO4:Eu2+ phosphors prepared by using a solid-state reaction method for white light-emitting diodes. Journal of the Korean Physical Society, 2015,67(3):556-562. |
[23] | ANNADURAI G, LI B, DERAKUMAR B , et al. Synthesis, structural and photoluminescence properties of novel orange-red emitting Ba3Y2B6O15:Eu 3+ phosphors. Journal of Luminescence, 2019,208:75-81. |
[24] | ZHANG W, SHEN H, HU X L , et al. Solid-state synthesis, structure and spectroscopic analysis of Dy:CaYAl3O7 phosphors. Journal of Alloys and Compounds, 2019,781:255-260. |
[25] | WU Z C, LIU J, HOU W G , et al. A new single-host white-light- emitting BaSrMg(PO4)2: Eu 2+ phosphor for white-light-emitting diodes. J. Alloys Compd, 2010,498(2):139-142. |
[26] | KIM J S, JEON P E, PARK Y H , et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor. Appl. Phys. Lett., 2004,85(17):3696. |
[27] | SHANG M M, LI G G, KANG X J , et al. LaOF : Eu 3+ nanocrystals: hydrothermal synthesis, white and color-tuning emission properties. Dalton Trans., 2012,41(18):5571-5580. |
[28] | LI C X, ZHANG C M, HOU Z Y , et al. β-NaYF4 and β-NaYF4:Eu 3+ microstructures: morphology control and tunable luminescence properties. J. Phys. Chem. C, 2009,113(6):2332-2339. |
[29] | LIU X M, LI C X, QUAN Z W , et al. Tunable luminescence properties of CaIn2O4:Eu3+ phosphors. J. Phys. Chem. C, 2007 , 111(44):16601-16607. |
[30] | LIANG C H, TEOH L G, LIU K T , et al. Near white light emission of BaY2ZnO5 doped with Dy3+ ions. J. Alloys Compd., 2012,517:9-13. |
[31] | AUZEL F, PELLE F . Concentration and excitation efffects in multiphonon non-radiative transitions of rare-earth ions. Journal of Luminescence, 1996,69(5/6):249-255. |
[32] | BLASSE G . Energy transfer in oxiidic phosphors. Physics Letters A, 1968,28(6):444-445. |
[33] | LU M, ZHU C F, CHEN Z T , et al. Ca10Na(PO4)7: Eu 2+, Mn 2+ phosphors for ultraviolet light emitting diodes. Polyhedron., 2018,153:139-144. |
[34] | HUANG C H, LIU W R, CHEN T M . Single-phased white-light phosphors Ca9Gd(PO4)7:Eu 2+,Mn 2+ under near-ultraviolet excitation . J. Phys. Chem. C, 2010,114(43):18698-18701. |
[35] | YANG W J, LUO L Y, CHEN T M , et al. Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-Light UVLED. Chem. Mater., 2005,17(15):3883-3888. |
[36] | HSU C H, DAS S, LU C H . Color-tunable, single phased MgY4Si3O13: Ce 3+, Mn 2+ phosphors with efficient energy transfer for white-light-emitting diodes . J. Electrochem. Soc., 2012,159(5):J193-J199. |
[37] | LIU Y F, ZHANG X, HAO Z D , et al. Tunable full-color-emitting Ca3Sc2Si3O12:Ce 3+, Mn2+ phosphorvia charge compensation and energy transfer. Chem. Commun., 2011,47(38):10677-10679. |
[38] | LAKSHMINARASIMHAN N, VARADARAJU U V . White-light generation in Sr2SiO4:Eu2+, Ce3+ under near-UV excitation: a novel phosphor for solid-state lighting. J. Electrochem. Soc., 2005,152(9):H152-H156. |
[39] | CHANG C K, CHEN T M . Sr3B2O6:Ce 3+, Eu 2+: a potential single- phased white-emitting borate phosphor for ultraviolet light-emitting diodes . Appl. Phys. Lett., 2007,91(8):081902. |
[40] | WEN Y, WANG Y H, ZHANG F , et al. Near-ultraviolet excitable Ca4Y6(SiO4)6O: Ce3+, Tb3+ white phosphors for light-emitting diodes. Mater. Chem. Phys., 2011,129(3):1171-1175. |
[41] | JIAO H Y, WANG Y H . Ca2Al2SiO7: Ce 3+, Tb 3+: a white-light phosphor suitable for white-light-emitting diodes . J. Electrochem. Soc., 2009,156(5):J117-J120. |
[42] | GONG Y, WANG Y H, LI Y Q . Ce 3+, Dy 3+ Co-doped white-light long-lasting phosphor: Sr2Al2SiO7 through energy transfer . J. Electrochem. Soc., 2010,157(6):J208-J211. |
[43] | LIU X L, LIU Y X, YAN D T , et al. Single-phased white-emitting 12CaO·7Al2O3:Ce 3+, Dy 3+ phosphors with suitable electrical conductivity for field emission displays. J. Mater. Chem., 2012,22(3):16839-16843. |
[44] | XUAN T T, LIU J Q, XIE R J , et al. Microwave-assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition. Chem. Mater., 2015,27(4):1187-1193. |
[45] | KRAUSE M M, MOONEY J, KAMBHAMPATI P . Chemical and thermodynamic control of the surface of semiconductor nanocrystals for designer white light emitters. ACS Nano, 2013,7(7):5922-5929. |
[46] | SHEN C C, TSENG W L . One-step synthesis of white-light emitting quantum dots at low temperature. Inorg. Chem., 2009,48(18):8689-8694. |
[47] | ZIEGLER J, XU S, KUCUR E , et al. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs. Adv. Mater., 2008,20(21):4068-4073. |
[48] | LIM J H, PARK M J, BAE W K , et al. Highly efficient cadmium- free quantum dot light emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano, 2013,7(10):9019-9026. |
[49] | BOL A A, MEJJERINK A . Luminescence of nanocrystalline ZnS: Pb 2+ . Phys. Chem., 2001,3(11):2105-2112. |
[50] | CHEN H S, WANG S J J, LO C J , et al. White-light emission from organics-capped ZnSe quantum dots and application in white- light-emitting diodes. Appl. Phys. Lett., 2005,86(13):131905. |
[51] | NIZAMOGLU S, MUTLUGUN E, AKYUZO , et al. White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning. New J. Phys., 2008,10:023026. |
[52] | BOWERS M J, MCBRIDE J R, ROSENTHAL S J . White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc., 2005,127(44):15378-15379. |
[53] | ROSSON T E, CLAIBOME S M, MCBRIDE J R , et al. Bright white light emission from ultrasmall cadmium selenide nanocrystals. J. Am. Chem. Soc., 2012,134(19):8006-8009. |
[54] | LIU Q H, DENG R P, JI X L , et al. Alloyed Mn-Cu-In-S nanocrystals: a new type of diluted magnetic semiconductor quantum dots. Nanotechnology, 2012,23(25):255706. |
[55] | DING K, JING L H, LIU C Y , et al. Magnetically engineered Cd-free quantum dots as dualmodality probes for fluorescence/ magnetic resonance imaging of tumors. Biomaterials, 2014,35(5):1608-1617. |
[56] | ZHANG Z L, LIU D, LI D Z , et al. Dual emissive Cu-InP/ZnS/InP/ZnS nanocrystals: single-source“greener” emitters with flexibly tunable emission from visibleto near-infrared and their application in white light emitting diodes. Chem. Mater., 2015,27(4):1405-1411. |
[57] | PENG L H, LI D Z, ZHANG Z L , et al. Large-scale synthesis of single-source, thermally stable, and dual-emissive Mn-doped Zn-Cu-In-S nanocrystals for bright white light-emitting diodes. Nano Research., 2015,8(10):3316-3331. |
[58] | LI J, ZHOU H F, LIU X , et al. Spectral analysis and band gap of RbVO3. Spectroscopy and Spectral Analysis, 2010,12(30):3320-3323. |
[59] | NAKAJIMA T, ISOBE M, TSUCHIYA T . Direct fabrication of metavanadate phosphor films on organic substrates for white- light-emitting devices. Nature Materials, 2008,7(9):735-740. |
[60] | NAKAJIMA T, ISOBE M, TSUCHIYA T . A revisit of photoluminescence property for vanadate oxides AVO3 (A: K, Ru and Cs) and M3V2O8 (M: Mg and Zn). Journal of Luminescence, 2009,3(029):1598-1601. |
[61] | NAKAJIMA T, ISOBE M, UZAWA Y , et al. Rare earth-free high color rendering white light-emitting diodes using CsVO3 with highest quantum efficiency for vanadate phosphors. J. Mater. Chem. C, 2015,3:10748. |
[62] | LI J, LI X, WANG C , et al. Preparation and properties of CsVO3/polymer composite material. Journal of Functional Materials, 2014,39(45):3106-3109. |
[63] | SUN G Y, LI W J, JI S D , et al. Heterogeneity in optimized solid-state synthesis of metavanadate AVO3(A=Rb, Cs). Res. Chem, Interned., 2017,43(1):341-352. |
[64] | CHEN X, XIA Z G, YI M . Rare-earth free self-activated and rare-earth activated Ca2NaZn2V3O12 vanadate phosphors and their color-tunable luminescence properties. Journal of Physics and Chemistry of Solids, 2013,5(74):1439-1443. |
[65] | LI X M, WU Y, ZHANG S L , et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016,4(26):2435-2445. |
[66] | LUO J J, WANG X M, LI S R , et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018,563:541-545. |
[67] | DONG Y H, ZENG S Y, HAN B N , et al. BN/CsPbX3 composite nanocrystals: synthesis and applications in white LED. Journal of Inorganic Materials, 2019,34(1):72-78. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||