 
 Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (7): 775-780.DOI: 10.15541/jim20180441
Special Issue: MAX相和MXene材料; 副主编黄庆研究员专辑
Previous Articles Next Articles
					
													LIU Guo-Quan1,JIANG Xiao-Juan1,2,ZHOU Jie2,LI You-Bing2,BAI Xiao-Jing2,CHEN Ke2,HUANG Qing2( ),DU Shi-Yu2(
),DU Shi-Yu2( )
)
												  
						
						
						
					
				
Received:2018-09-18
															
							
																	Revised:2018-11-24
															
							
															
							
																	Published:2019-07-20
															
							
																	Online:2019-06-26
															
						Supported by:CLC Number:
LIU Guo-Quan, JIANG Xiao-Juan, ZHOU Jie, LI You-Bing, BAI Xiao-Jing, CHEN Ke, HUANG Qing, DU Shi-Yu. Synthesis and Theoretical Study of Conductive Mo1.33CT2 MXene[J]. Journal of Inorganic Materials, 2019, 34(7): 775-780.
| Elastic constant/GPa | F | O | OH | 
|---|---|---|---|
| C11 | 135 | 111 | 120 | 
Table 1 Elastic constant of Mo1.33CT2
| Elastic constant/GPa | F | O | OH | 
|---|---|---|---|
| C11 | 135 | 111 | 120 | 
| [1] | NOVOSELOV K S, GEIM A K, MOROZOV S V , et al. Electric field effect in atomically thin carbon films. Science, 2004,306(5696):666-669. DOI URL | 
| [2] | NOVOSELOV K S, JIANG D, BOOTH T , et al. Two-dimensional atomic crystals. PNAS, 2005,102(30):10451-10453. DOI URL | 
| [3] | COLEMAN J N, LOTYA M, O'NEILL A , et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011,42(18):568-571. | 
| [4] | MA R, SASAKI T . Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Advanced Materials, 2011,42(5):5082-5104. | 
| [5] | NAGUIB M, KURTOGLU M, PRESSER V , et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011,23(37):4248-4253. DOI URL | 
| [6] | NAGUIB M, MASHTALIR O, CARLE J , et al. Two-dimensional transition metal carbides. ACS Nano, 2012,6(2):1322-1331. DOI URL | 
| [7] | NAGUIB M, HALIM J, LU J , et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. Journal of the American Chemical Society, 2013,135(43):15966-15969. DOI URL | 
| [8] | GHIDIU M, NAGUIB M, SHI C , et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chemical Communications, 2014,50(67):9517-9520. DOI URL | 
| [9] | LING Z, REN C E, ZHAO M Q , et al. Flexible and conductive MXene films and nanocomposites with high capacitance. PNAS, 2014,111(47):16676-16681. DOI URL | 
| [10] | LEI J C, ZHANG X, ZHOU Z . Recent advances in MXene: preparation, properties, and applications. Frontiers of Physics, 2015,10(3):276-286. DOI URL | 
| [11] | NAGUIB M, MOCHALIN V N, BARSOUM M W , et al. MXenes: a new family of two-dimensional materials. Advanced Materials, 2014,26(7):992-1005. DOI URL | 
| [12] | LI ZHENG-YANG, ZHOU AI-GUO, WANG LI-BO , et al. Research progress on preparation and properties of two-dimensional crystal MXene. Bulletin of the Chinese Ceramic Society, 2013,32(8):1562-1566. | 
| [13] | ZHANG TIAN, PAN LI-MEI, TANG HUAN , et al. Preparation, delamination and electrochemical performance of two-dimensional crystal Ti2CTx MXene. Journal of Synthetic Crystals, 2016,45(6):1514-1519. | 
| [14] | ZHANG JIAN-FENG, CAO HUI-YANG, WANG HONG-BING . Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 2017,32(6):561-570. DOI URL | 
| [15] | FENG L, ZHA X H, LUO K , et al. Structures and mechanical and electronic properties of the Ti2CO2, MXene incorporated with neighboring elements (Sc, V, B and N). Journal of Electronic Materials, 2017,46(4):2460-2466. DOI URL | 
| [16] | ALHABEB M, MALESKI K, ANASORI B , et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017,29(18):7633-7644. DOI URL | 
| [17] | XUAN J, WANG Z, CHEN Y , et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angewandte Chemie International Edition, 2016,55(47):14569-14574. DOI URL | 
| [18] | URBANKOWSKI P, ANASORI B, MAKARYAN T , et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016,8(22):11385-11391. DOI URL | 
| [19] | TOTH L E . High superconducting transition temperatures in the molybdenum carbide family of compounds. Journal of the Less Common Metals, 1967,13(1):129-131. DOI URL | 
| [20] | HU C, LI C, HALIM J , et al. On the rapid synthesis of the ternary Mo2GaC. Journal of the American Ceramic Society, 2015,98(9):2713-2715. DOI URL | 
| [21] | HU C, LAI C C, TAO Q , et al. Mo2Ga2C: a new ternary nanolaminated carbide. Chemical Communications, 2015,51(30):6560-6563. DOI URL | 
| [22] | HALIM J, KOTA S, LUKATSKAYA M R , et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 2016,26(18):3118-3127. DOI URL | 
| [23] | ANASORI B, HALIM J, LU J , et al. Mo2TiAlC2: a new ordered layered ternary carbide. Scripta Materialia, 2015,101:5-7. DOI URL | 
| [24] | ZHA X H, YIN J, ZHOU Y , et al. Intrinsic structural, electrical, thermal, and mechanical properties of the promising conductor Mo2C MXene. Journal of Physical Chemistry C, 2016,120(28):15082-15088. DOI URL | 
| [25] | MESHKIAN R, TAO Q, DAHLQVIST M , et al. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2, MXene. Acta Materialia, 2017,125:476-480. DOI URL | 
| [26] | TAO Q, DAHLQVIST M, LU J , et al. Two-dimensional Mo1. 33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nature Communications, 2017,8:1-7. DOI URL | 
| [27] | DAHLQVIST M, LU J, MESHKIAN R , et al. Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering. Science Advance, 2017,3(7):1-9. | 
| [28] | KHAZAEI M, ARAI M, SASAKI T , et al. Trends in electronic structures and structural properties of MAX phases: a first- principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. Journal of Physics Condensed Matter, 2014,26(50):1-27. | 
| [29] | ROKNUZZAMAN M, HADI M A, ALI M A , et al. First hafnium- based MAX phase in the 312 family, Hf3AlC2: a first-principles study. Journal of Alloys & Compounds, 2017,727:616-626. | 
| [30] | DING H, GLANDUT N, FAN X , et al. First-principles study of hydrogen incorporation into the MAX phase Ti3AlC2. International Journal of Hydrogen Energy, 2016,41(15):6387-6393. DOI URL | 
| [31] | HADI M A, ROKNUZZAMAN M, PARVIN F , et al. New MAX phase superconductor Ti2GeC: a first-principles study. Journal of Scientific Research, 2013,6(1):11-27. DOI URL | 
| [32] | LIND H, HALIM J, SIMAK S I , et al. Investigation of vacancy- ordered Mo1.33C, MXene from first principles and X-ray photoelectron spectroscopy. Phys. Rev.Materials, 2017,1:044002. DOI URL | 
| [33] | ZHA X H, LUO K, LI Q W , et al. Role of the surface effect on the structural,electronic and mechanical properties of the carbide MXenes. Europhysics Letters, 2015, 111(2): 26007-1-6. | 
| [1] | LIU Huilai, LI Zhihao, KONG Defeng, CHEN Xing. Preparation of FePc/MXene Composite Cathode and Electro-Fenton Degradation of Sulfadimethoxine [J]. Journal of Inorganic Materials, 2025, 40(1): 61-69. | 
| [2] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. | 
| [3] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. | 
| [4] | LI Lei, CHENG Qunfeng. Recent Advances in the High Performance MXenes Nanocomposites [J]. Journal of Inorganic Materials, 2024, 39(2): 153-161. | 
| [5] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. | 
| [6] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. | 
| [7] | BA Kun, WANG Jianlu, HAN Meikang. Perspectives for Infrared Properties and Applications of MXene [J]. Journal of Inorganic Materials, 2024, 39(2): 162-170. | 
| [8] | YIN Jianyu, LIU Nishuang, GAO Yihua. Recent Progress of MXene in Pressure Sensing [J]. Journal of Inorganic Materials, 2024, 39(2): 179-185. | 
| [9] | LIU Yanyan, XIE Xi, LIU Zengqian, ZHANG Zhefeng. Metal Matrix Composites Reinforced by MAX Phase Ceramics: Fabrication, Properties and Bioinspired Designs [J]. Journal of Inorganic Materials, 2024, 39(2): 145-152. | 
| [10] | DENG Shungui, ZHANG Chuanfang. MXene Multifunctional Inks: a New Perspective toward Printable Energy-related Electronic Devices [J]. Journal of Inorganic Materials, 2024, 39(2): 195-203. | 
| [11] | CHEN Ze, ZHI Chunyi. MXene Based Zinc Ion Batteries: Recent Development and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 204-214. | 
| [12] | WAN Hujie, XIAO Xu. Terahertz Electromagnetic Shielding and Absorbing of MXenes and Their Composites [J]. Journal of Inorganic Materials, 2024, 39(2): 129-144. | 
| [13] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. | 
| [14] | ZHOU Jingyu, LI Xingyu, ZHAO Xiaolin, WANG Youwei, SONG Erhong, LIU Jianjun. Rate and Cycling Performance of Ti and Cu Doped β-NaMnO2 as Cathode of Sodium-ion Battery [J]. Journal of Inorganic Materials, 2024, 39(12): 1404-1412. | 
| [15] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||