Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (12): 1233-1242.DOI: 10.15541/jim20170066
• Orginal Article • Next Articles
TIAN Xiao, DUAN Ru-Xia, ZHAO Li-Juan, NAREN Ge-Ri-Le
Received:
2017-02-08
Revised:
2017-04-17
Published:
2017-12-20
Online:
2017-11-21
CLC Number:
TIAN Xiao, DUAN Ru-Xia, ZHAO Li-Juan, NAREN Ge-Ri-Le. Anode Catalyst for the Direct Borohydride Fuel Cell[J]. Journal of Inorganic Materials, 2017, 32(12): 1233-1242.
Type | Electrocatalyst | Fuel | Oxidant | Theoretical data of open circuit voltage | Main existence question | Possible application fields |
---|---|---|---|---|---|---|
PEMFC | Pt | H2/Reformer hydrogen | Air/Pure oxygen | 1.23 V | Hydrogen supply system, catalyst cost | Hybrid electric vehicles, portable power source |
DMFC | Pt, Pt-Ru | Methanol | Air | 1.183 V | Catalyst poisoning, catalyst cost | A small mobile power source |
DBFC | Non-noble metal | Borohydride | Air/O2/ H2O2 | 1.64 V | Hydrolysis reaction, catalyst cost | Portable electronics, mobile power |
Table 1 Technical state of common low temperature fuel cells
Type | Electrocatalyst | Fuel | Oxidant | Theoretical data of open circuit voltage | Main existence question | Possible application fields |
---|---|---|---|---|---|---|
PEMFC | Pt | H2/Reformer hydrogen | Air/Pure oxygen | 1.23 V | Hydrogen supply system, catalyst cost | Hybrid electric vehicles, portable power source |
DMFC | Pt, Pt-Ru | Methanol | Air | 1.183 V | Catalyst poisoning, catalyst cost | A small mobile power source |
DBFC | Non-noble metal | Borohydride | Air/O2/ H2O2 | 1.64 V | Hydrolysis reaction, catalyst cost | Portable electronics, mobile power |
Anode catalyst | Cathode catalyst | Oxidant | T/℃ | Power density/(mW•cm-2) | Ref. |
---|---|---|---|---|---|
Au-Pt | MnO2 | Air | 25 | 20.0 | [25] |
Pt3-Au2 | Pt/C | Humidified O2 | 65 | 161.0 | [26] |
Pt1-Au1 | Pt-based | O2 | 60 | 47.0 | [18] |
Au1-Pd1 | Pt-based | O2 | 60 | 31.0 | [11] |
Pd | Pt/C | Humidified O2 | NA | ~185.0 | [27] |
Au | Pt/C | Humidified O2 | NA | ~82.0 | [27] |
5wt%Au-15wt%Pd | Pt/C | Humidified O2 | NA | ~120.0 | [27] |
10wt%Au-10wt%Pd | Pt/C | Humidified O2 | 50 | ~90.0 | [27] |
15wt%Au-5wt%Pd | Pt/C | Humidified O2 | 50 | ~75.0 | [27] |
Pt black | Pt black | NA | 60 | 31.6 | [28] |
Pt1-Ru1 black | Pt black | NA | 60 | 35.1 | [28] |
Au | Au/C | NA | 20 | ~28.0 | [30] |
Pd | Au/C | NA | 20 | ~41.0 | [30] |
Au2-Pd1 | Au/C | NA | 20 | ~46.0 | [30] |
Au1-Pd1 | Au/C | NA | 20 | ~49.0 | [30] |
Au1-Pd2 | Au/C | NA | 20 | 56.8 | [30] |
Table 2 Performance data for DBFCs employing binary noble metal anodes
Anode catalyst | Cathode catalyst | Oxidant | T/℃ | Power density/(mW•cm-2) | Ref. |
---|---|---|---|---|---|
Au-Pt | MnO2 | Air | 25 | 20.0 | [25] |
Pt3-Au2 | Pt/C | Humidified O2 | 65 | 161.0 | [26] |
Pt1-Au1 | Pt-based | O2 | 60 | 47.0 | [18] |
Au1-Pd1 | Pt-based | O2 | 60 | 31.0 | [11] |
Pd | Pt/C | Humidified O2 | NA | ~185.0 | [27] |
Au | Pt/C | Humidified O2 | NA | ~82.0 | [27] |
5wt%Au-15wt%Pd | Pt/C | Humidified O2 | NA | ~120.0 | [27] |
10wt%Au-10wt%Pd | Pt/C | Humidified O2 | 50 | ~90.0 | [27] |
15wt%Au-5wt%Pd | Pt/C | Humidified O2 | 50 | ~75.0 | [27] |
Pt black | Pt black | NA | 60 | 31.6 | [28] |
Pt1-Ru1 black | Pt black | NA | 60 | 35.1 | [28] |
Au | Au/C | NA | 20 | ~28.0 | [30] |
Pd | Au/C | NA | 20 | ~41.0 | [30] |
Au2-Pd1 | Au/C | NA | 20 | ~46.0 | [30] |
Au1-Pd1 | Au/C | NA | 20 | ~49.0 | [30] |
Au1-Pd2 | Au/C | NA | 20 | 56.8 | [30] |
Anode catalyst | Cathode catalyst | Oxidant | T/℃ | Power density/ (mW•cm-2) | Ref. |
---|---|---|---|---|---|
LmNi4.78Mn0.22 | Nickel foam | NA | NA | NA | [65] |
MmNi3.55Al0.3Mn0.4Co0.75 | FeTMPP/C | H2O2+H2SO4 | 70 | 82 | [66] |
MmNi3.55Al0.3Mn0.4Co0.75 | PbSO4/C | H2O2+H2SO4 | 70 | 120 | [66] |
MmNi3.35Co0.75Mn0.4Al0.3 | MnO2/C | O2 | 25 | 70 | [67] |
MmNi3.6Al0.4Mn0.3Co0.7 | Au/SS mesh | H2O2+H2SO4 | 25 | 50 | [68] |
MmNi3.55Co0.75Mn0.4Al0.3 | Iron phthalocyanin/C | Air | RT | 92 | [69] |
MmNi3.6Al0.4Mn0.3Co0.7 | PbSO4/C | H2O2+H2SO4 | 25 | 10 | [70] |
MmNi3.55Co0.75Mn0.4Al0.3 | Cobalt phthalocyanin | Air | RT | 90 | [71] |
MmNi3.55Co0.75Mn0.4Al0.3 | Prussian blue | H2O2+H2SO4+KCl | 30 | 68 | [72] |
MmNi3.55Co0.75Mn0.4Al0.3 | LaNiO3/C | Air | 65 | 127 | [73] |
La10.5Ce4.3Pr0.5Nd1.4Ni60.0Co12.7Mn5.9Al4.7 | Pd/C | Air | NA | 81 | [74] |
MmNi3.55Co0.75Mn0.4Al0.3 | LaCoO3/C/Ni-foam | Air | RT | 65 | [62] |
LaMnNi3.55Al0.30Mn0.40Co0.75 | Nickel foam | Air | NA | NA | [61] |
Zr0.9Ti0.1Mn0.6V0.2Co0.1Ni1.1 | Pt/C | O2 | 85 | 190 | [75] |
Zr0.9Ti0.1Mn0.6V0.2Co0.1Ni1.1 | Pt/C | O2 | 60 | NA | [76] |
ZrCr0.8Ni1.2 | Pt/C | O2 | 25 | NA | [57] |
Zr0.9Ti0.1V0.2Mn0.6Cr0.05Co0.05Ni1.2 | Pt/C | H2O2 | 70 | 70 | [77] |
Table 3 Performance data for DBFCs employing hydrogen storage alloy anodes
Anode catalyst | Cathode catalyst | Oxidant | T/℃ | Power density/ (mW•cm-2) | Ref. |
---|---|---|---|---|---|
LmNi4.78Mn0.22 | Nickel foam | NA | NA | NA | [65] |
MmNi3.55Al0.3Mn0.4Co0.75 | FeTMPP/C | H2O2+H2SO4 | 70 | 82 | [66] |
MmNi3.55Al0.3Mn0.4Co0.75 | PbSO4/C | H2O2+H2SO4 | 70 | 120 | [66] |
MmNi3.35Co0.75Mn0.4Al0.3 | MnO2/C | O2 | 25 | 70 | [67] |
MmNi3.6Al0.4Mn0.3Co0.7 | Au/SS mesh | H2O2+H2SO4 | 25 | 50 | [68] |
MmNi3.55Co0.75Mn0.4Al0.3 | Iron phthalocyanin/C | Air | RT | 92 | [69] |
MmNi3.6Al0.4Mn0.3Co0.7 | PbSO4/C | H2O2+H2SO4 | 25 | 10 | [70] |
MmNi3.55Co0.75Mn0.4Al0.3 | Cobalt phthalocyanin | Air | RT | 90 | [71] |
MmNi3.55Co0.75Mn0.4Al0.3 | Prussian blue | H2O2+H2SO4+KCl | 30 | 68 | [72] |
MmNi3.55Co0.75Mn0.4Al0.3 | LaNiO3/C | Air | 65 | 127 | [73] |
La10.5Ce4.3Pr0.5Nd1.4Ni60.0Co12.7Mn5.9Al4.7 | Pd/C | Air | NA | 81 | [74] |
MmNi3.55Co0.75Mn0.4Al0.3 | LaCoO3/C/Ni-foam | Air | RT | 65 | [62] |
LaMnNi3.55Al0.30Mn0.40Co0.75 | Nickel foam | Air | NA | NA | [61] |
Zr0.9Ti0.1Mn0.6V0.2Co0.1Ni1.1 | Pt/C | O2 | 85 | 190 | [75] |
Zr0.9Ti0.1Mn0.6V0.2Co0.1Ni1.1 | Pt/C | O2 | 60 | NA | [76] |
ZrCr0.8Ni1.2 | Pt/C | O2 | 25 | NA | [57] |
Zr0.9Ti0.1V0.2Mn0.6Cr0.05Co0.05Ni1.2 | Pt/C | H2O2 | 70 | 70 | [77] |
[1] | ROSEN M A, KOOHI-FAYEGH S.The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems.Energy, Ecology and Environment, 2016, 1(1): 10-29. |
[2] | SONG M Y, PARK H R, KWON S N.Evaluation of the metal-added Mg hydrogen storage material and comparison with the oxide-added Mg.Journal of Industrial and Engineering Chemistry, 2015, 21: 378-386. |
[3] | DE LEON C P, WALSH F C, PLETCHER D,et al.Direct borohydride fuel cells. Journal of Power Sources, 2006, 155(2): 172-181. |
[4] | MA J, CHOUDHURY N A, SAHAI Y.A comprehensive review of direct borohydride fuel cells.Renewable and Sustainable Energy Reviews, 2010, 14(1): 183-199. |
[5] | MERINO-JIMENEZ I, DE LEON C P, SHAH A A,et al Developments in direct borohydride fuel cells and remaining challenges.Journal of Power Sources, 2012, 219: 339-357. |
[6] | OLU P Y, JOB N, CHATENET M,et al.Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: methods and benchmarks. Journal of Power Sources, 2016, 327: 235-257. |
[7] | YI L H, SONG Y F, YI W,et al Carbon supported Pt hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells.International Journal of Hydrogen Energy, 2011, 36(18): 11512-11518. |
[8] | WEI J L, WANG X Y, WANG Y,et al Investigation of carbon- supported Au hollow nanospheres as electrocatalyst for electrooxidation of sodium borohydride.International Journal of Hydrogen Energy, 2009, 34(8): 3360-3366. |
[9] | CHATENET M, MICOUD F, ROCHE I,et al. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte-Part I. BH4- electro-oxidation on Au and Ag catalysts. Electrochimica Acta, 2006, 51(25): 5459-5467. |
[10] | CHENG H, SCOTT K.Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode.Electrochimica Acta, 2006, 51(17): 3429-3433. |
[11] | ATWAN M H, MACDONALD C L B, NORTHWOOD D O,et al.Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: electrocatalysis and fuel cell performance. Journal of Power Sources, 2006, 158(1): 36-44. |
[12] | CELIKKAN H, SAHIN M, AKSU M L,et al The investigation of the electrooxidation of sodium borohydride on variousmetal electrodes in aqueous basic solutions.International Journal of Hydrogen Energy, 2007, 32(5): 588-593. |
[13] | PONCE-DE-LEON C, BAVYKIN D V, WALSH F C. The oxidation of borohydride ion at titanate nanotube supported gold electrodes.Electrochemistry Communications, 2006, 8(10): 1655-1660. |
[14] | CONCHA B M, CHATENET M.Direct oxidation of sodium borohydride on Pt, Ag and alloyed Pt-Ag electrodes in basic media Part II. carbon-supported nanopaticles.Electrochimica Acta, 2009, 54(26): 6130-6139. |
[15] | LIU B H, LI Z P.A review: hydrogen generation from borohydride hydrolysis reaction.Journal of Power Sources, 2009, 187(2): 527-534. |
[16] | QIN H Y, CHEN K J, ZHU C,et al.High electrocatalytic activity for borohydride oxidation on palladium nanocubes enclosed by {200} facets. Journal of Power Sources, 2015, 299: 241-245. |
[17] | LIU B H, LI Z P, SUDA S.Electrocatalysts for the anodic oxidation of borohydrides.Electrochimica Acta, 2004, 49(19): 3097-3105. |
[18] | GYENGE E, ATWAN M, NORTHWOOD D.Electrocatalysis of borohydride oxidation on colloidal Pt and Pt-alloys (Pt-Ir, Pt-Ni, and Pt-Au) and application fordirect borohydride fuel cell anodes.Journal of the Electrochemical Society, 2006, 153(1): A150-A158. |
[19] | CHENG H, SCOTT K, LOVELL K.Material aspects of the design and operation of direct borohydride fuel cells.Fuel Cells, 2006, 6(5): 367-375. |
[20] | LAM V W S, KANNANGARA D C W, ALFANTAZI A,et al Electrodeposited osmium three-dimensional anodes for direct borohydride fuel cells.Journal of Power Sources, 2012, 212: 57-65. |
[21] | LIU J, WANG H, WU C,et al Preparation and characterization of nanoporous carbon-supported platinum as anode electrocatalyst for direct borohydride fuel cell.International Journal of Hydrogen Energy, 2014, 39(12): 6729-6736. |
[22] | REZA O, JAHAN-BAKHSH R, ROUDABEH V.Pt nanoparticles/ graphene paste electrode for sodium borohydride electrooxidation.Journal of Solid State Electrochemistry, 2013, 17(1): 217-221. |
[23] | MARTINS M, ŠLJUKIĆ B, SEQUEIRA C A C,et al.Biobased carbon-supported palladium electrocatalysts for borohydride fuel cells. International Journal of Hydrogen Energy, 2016, 41(25): 10914-10922. |
[24] | CHENG K, JIANG J T, KONG S Y,et al. Pd nanoparticles support on rGO-C@TiC coaxial nanowires as a novel 3D electrode for NaBH4 electrooxidation. International Journal of Hydrogen Energy, 2017, 42(5): 2943-2951. |
[25] | COOWAR F A, VITINS G, MEPSTED G O,et al Electrochemical oxidation of borohydride at nano-gold-based electrodes: application in direct borohydride fuel cells.Journal of Power Sources, 2008, 175(1): 317-324. |
[26] | KARADAG C I, BEHMENYAR G, BOYACI SAN F,et al Investigation of carbon supported nanostructured PtAu alloy as electrocatalyst for direct borohydride fuel cell.Fuel Cells, 2015, 15(2): 262-269. |
[27] | LEE H M, PARK S Y, PARK K T,et al Development of Au-Pd catalysts supported on carbon for a direct borohydride fuel cell.Research on Chemical Intermediates, 2008, 34(8/9): 787-792. |
[28] | LAM V W S, ALFANTAZI A, GYENGE E L. The effect of catalyst support on the performance of PtRu in direct borohydride fuel cell anodes.Journal of Applied Electrochemistry, 2009, 39(10): 1763-1770. |
[29] | MERINO-JIMENEZ I, JANIK M J, DE LEON C P,et al Pd-Ir alloy as an anode material for borohydride oxidation.Journal of Power Sources, 2014, 269: 498-508. |
[30] | WANG H, WANG X Y, HE P Y,et al. Performance of AuPd/C as anode catalyst of direct NaBH4-H2O2 fuel cell. The Chinese Journal of Nonferrous Metals, 2011, 21(2): 405-410. |
[31] | LI J, QIAN G C, ZHU Y X,et al Electrochemical behaviour of Pd-Ag/C towards sodium borohydride electrooxidation.Chemical Industry and Engineering, 2016, 33(5): 45-49. |
[32] | BALCIUNAITE A, SUKACKIENE Z, TAMASAUSKAITE- TAMASIUNAITE L,et al.CoB/Cu and PtCoB/Cu catalysts for borohydride fuel cells. Electrochimica Acta, 2017, 225: 255-262. |
[33] | LIU B H, LI Z P, SUDA S.Anodic oxidation of alkali borohydrides catalyzed by nickel.Journal of the Electrochemical Society, 2003, 150(3): A398-A402. |
[34] | LIU B H, LI Z P, ARAI K,et al Performance improvement of a micro borohydride fuel cell operating at ambient conditions.Electrochimica Acta, 2005, 50(18): 3719-3725. |
[35] | MALYALA R V, RODE C V, ARAI M,et al Activity, selectivity and stability of Ni and bimetallic Ni-Pt supported on zeolite Y catalysts for hydrogenation of acetophenone and its substituted derivatives.Applied Catalysis A General, 2000, 193(1/2): 71-86. |
[36] | JAMARD R, LATOUR A, SALOMON J,et al Study of fuel efficiency in a direct borohydride fuel cell.Journal of Power Sources, 2008, 176(1): 287-292. |
[37] | GENG X Y, ZHANG H M, YE W,et al Ni-Pt/C as anode electrocatalyst for a direct borohydride fuel cell.Journal of Power Sources, 2008, 185(2): 627-632. |
[38] | DUAN D H, LIANG J W, LIU H H,et al.The effective carbon supported coreeshell structure of Ni@Au catalysts for electro- oxidation of borohydride. International Journal of Hydrogen Energy, 2015, 40(1): 488-500. |
[39] | LIANG J W, LIU H H, WEI H K,et al. Studies of anode of sodium borohydride fuel cell. Chinese Journal of Power Sources, 2015, 39(10): 2119-2122. |
[40] | DUAN D H, WANG Q, LIU H H,et al Investigation of carbon- supported Ni@Ag core-shell nanoparticles as electrocatalyst for electrooxidation of sodium borohydride.Journal of Solid State Electrochemistry, 2016, 20(10): 2699-2711. |
[41] | FENG R X, CAO Y L, AI X P,et al AgNi alloy used as anodic catalyst for direct borohydride fuel cells.Acta Physico-Chimica Sinica, 2007, 23(6): 932-934. |
[42] | LIU B H, LI Z P, SUDA S.Development of high-performance planar borohydride fuel cell modules for portable applications. Journal of Power Sources, 2008, 175(1): 226-231. |
[43] | SANTOS D M F, SLJUKIC B, AMARAL L,et al Nickel and nickel-cerium alloy anodes for direct borohydride fuel cells.Journal of the Electrochemical society, 2014, 161(5): F594-F599. |
[44] | SANTOS D M F, SLJUKIC B, AMARAL L,et al Nickel-rare earth electrodes for sodium borohydride electrooxidation.Electrochimica Acta, 2016, 190: 1050-1056. |
[45] | YU D M, SHEN Y, YE Z,et al The preparation and performance of high activity Ni-Cr binary catalysts for direct borohydride fuel cells.Chinese Science Bulletin, 2013, 58(20): 2435-2439. |
[46] | ZHIANI M, MOHAMMADI I.Performance study of passive and active direct borohydride fuel cell employing a commercial Pd decorated Ni-Co/C anode catalyst. Fuel, 2016, 166: 517-525. |
[47] | HE P Y, WANG X Y, FU P,et al The studies of performance of the Au electrode modified by Zn as the anode electrocatalyst of direct borohydride fuel cell.International Journal of Hydrogen Energy, 2011, 36(15): 8857-8863. |
[48] | YI L H, WEI W, ZHAO C X,et al Electrochemical oxidation of sodium borohydride on carbon supported Pt-Zn nanoparticle bimetallic catalyst and its implications to direct borohydride-hydrogen peroxide fuel cell.Electrochimica Acta, 2015, 158: 209-218. |
[49] | DUAN D H, LIU H H, WANG Q,et al.Kinetics of sodium borohydride direct oxidation on carbon supported Cu-Ag bimetallic nanocatalysts. Electrochimica Acta, 2016, 198: 212-219. |
[50] | BEHMENYAR G, AKIN A N.Investigation of carbon supported Pd-Cu nanoparticles as anode catalysts for direct borohydride fuel cell.Journal of Power Sources, 2014, 249: 239-246. |
[51] | DUAN D H, YOU X, LIANG J W,et al Carbon supported Cu-Pd nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cells.Electrochimica Acta, 2015, 176: 1126-1135. |
[52] | YI L H, WEI W, ZHAO C X,et al Enhanced activity of Au-Fe/C anodic electrocatalyst for direct borohydride-hydrogen peroxide fuel cell.Journal of Power Sources, 2015, 285: 325-333. |
[53] | CHENG H, SCOTT K.Investigation of Ti mesh-supported anodes for direct borohydride fuel cells. Journal of Applied Electrochemistry, 2006, 36(12): 1361-1366. |
[54] | LI S, YANG X D, ZHU H Y,et al Investigation of amorphous CoB alloy as the anode catalyst for a direct borohydride fuel cell.Journal of Power Sources, 2011, 196(14): 5858-5862. |
[55] | LI S, CHEN Y Z, YANG X D,et al Amorphous metal borides used as anode catalyst for DBFC.Battery Bimonthly, 2013, 43(6): 325-328. |
[56] | LI S, WANG L N, CHU J,et al Investigation of Au@Co-B nanoparticles as anode catalyst for direct borohydride fuel cells.International Journal of Hydrogen Energy, 2016, 41(20): 8583-8588. |
[57] | LEE S M, KIM J H, LEE H,et al The characterization of an alkaline fuel cell that uses hydrogen storage alloys.Journal of the Electrochemical Society, 2002, 149(5): A603-A606. |
[58] | WANG L B, MA C A, MAO X B,et al Rare earth hydrogen storage alloy used in borohydride fuel cells.Electrochemistry Communications, 2005, 7(12): 1477-1481. |
[59] | WANG L B, MA C A, MAO X B.LmNi4.78Mn0.22 alloy modified with Si used as anodic materials in borohydride fuel cells.Journal of Alloys and Compounds, 2005, 397(1/2): 313-316. |
[60] | YANG Z Z, WANG L B, GAO Y F,et al. LaNi4.5Al0.5 alloy doped with Au used as anodic materials in a borohydride fuel cell. Journal of Power Sources, 2008, 184(1): 260-264. |
[61] | GRAS M, SIERCZYNSKA A, LOTA K,et al The modification of anode material for direct borohydride fuel cell.Ionics, 2016, 22(12): 2539-2544. |
[62] | LI S, YANG X D, ZHU H Y,et al Hydrogen storage alloy and carbon nanotubes mixed catalyst in a direct borohydride fuel cell.Journal of Materials Science & Technology, 2011, 27(12): 1089-1093. |
[63] | WANG G L, CHENG Y H, ZHANG W C,et al. Electrocatalytic performances of MmNi3.2Al0.2Mn0.6Co1.0 modified with MnO2 for NaBH4 oxidation. Chemical Journal of Chinese Universities, 2010, 31(1): 153-156. |
[64] | SAN F G B, KARADAG C L, OKUR O,et al.Optimization of the catalyst loading for the direct borohydride fuel cell. Energy, 2016, 114: 214-224. |
[65] | WANG L B, MA C N, SUN Y M,et al. AB5-type hydrogen storage alloy used as anodic materials in borohydride fuel cell. Journal of Alloys Compounds, 2005, 391(1/2): 318-322. |
[66] | RAMAN R K, SHUKLA A K.Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyrin and lead sulfate electrodes with application in direct borohydride fuel cells.Journal of Applied Electrochemistry, 2005, 35(11): 1157-1161. |
[67] | WANG Y G, XIA Y Y.A direct borohydride fuel cell using MnO2- catalyzed cathode and hydrogen storage alloy anode.Electrochemistry Communications, 2006, 8(11): 1775-1778. |
[68] | RAMAN R K, PRASHANT S K, SHUKLA A K.A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack.Journal of Power Sources, 2006, 162(2): 1073-1076. |
[69] | MA J F, WANG J, LIU Y N.Iron phthalocyanine as a cathode catalyst for a direct borohydride fuel cell.Journal of Power Sources, 2007, 172(1): 220-224. |
[70] | RAMAN R K, SHUKLA A K.A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover.Fuel Cells, 2007, 7(3): 225-231. |
[71] | MA J F, LIU Y N, ZHANG P,et al A simple direct borohydride fuel cell with a cobalt phthalocyanine catalyzed cathode.Electrochemistry Communications, 2008, 10(1): 100-102. |
[72] | SELVARANI G, PRASHANT S K, SAHU A K,et al.A direct borohydride fuel cell employing Prussian Blue as mediated electron- transfer hydrogen peroxide reduction catalyst. Journal of Power Sources, 2008, 178(1): 86-91. |
[73] | MA J, LIU Y, LIU Y,et al. A membraneless direct borohydride fuel cell using LaNiO3-catalysed cathode. Fuel Cells, 2008, 8(6): 394-398. |
[74] | CHOUDHURY N A, SAHAI Y, BUCHHEIT R G.Chitosan chemical hydrogel electrode binder for direct borohydride fuel cells.Electrochemistry Communications, 2011, 13(1): 1-4. |
[75] | LI Z P, LIU B H, ARAI K,et al A fuel cell development for using borohydrides as the fuel.Journal of the Electrochemical Society, 2003, 150(7): A868-A872. |
[76] | LI Z P, LIU B H, ARAI K,et al.Evaluation of alkaline borohydride solutions as the fuel for fuel cell. Journal of Power Sources, 2004, 126(1/2): 28-33. |
[77] | CHOUDHURY N A, RAMAN R K, SAMPATH S,et al An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant.Journal of Power Sources, 2005, 143(1/2): 1-8. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||