Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (8): 850-854.DOI: 10.15541/jim20160038
• Orginal Article • Previous Articles Next Articles
WU Yan-Qing, ZHANG Jia-Liang, LIU Da-Kang, SUN Dan-Dan
Received:
2016-01-25
Revised:
2016-03-22
Published:
2016-08-20
Online:
2016-07-20
About author:
WU Yan-Qing. E-mail: wq20061010@126.com
Supported by:
CLC Number:
WU Yan-Qing, ZHANG Jia-Liang, LIU Da-Kang, SUN Dan-Dan. Physical Properties of Ba(Ti0.96Sn0.04)O3 Ceramics[J]. Journal of Inorganic Materials, 2016, 31(8): 850-854.
Fine-BTO | Coarse-BTO | BTS(Ref.[10]) | BTS | |
---|---|---|---|---|
ρ0/% | 98.1 | 98.4 | 97.8 | 97.8 |
g/μm | 1.2 | 28.0 | 5.9 | 80.0 |
d33/(pC·N-1) | 413 | 173 | 205 | 300 |
ε′(at 1 kHz) | 3310 | 2910 | 3826 | 1855 |
TO-T/℃ | 28.3 | 23.1 | 43.0 | 36.9 |
TC/℃ | 121.2 | 123.5 | 92.2 | 92.4 |
Table 1 Physical properties of BaTi0.96Sn0.04O3(BTS) and BaTiO3(BTO) ceramics at room temperature
Fine-BTO | Coarse-BTO | BTS(Ref.[10]) | BTS | |
---|---|---|---|---|
ρ0/% | 98.1 | 98.4 | 97.8 | 97.8 |
g/μm | 1.2 | 28.0 | 5.9 | 80.0 |
d33/(pC·N-1) | 413 | 173 | 205 | 300 |
ε′(at 1 kHz) | 3310 | 2910 | 3826 | 1855 |
TO-T/℃ | 28.3 | 23.1 | 43.0 | 36.9 |
TC/℃ | 121.2 | 123.5 | 92.2 | 92.4 |
[1] | RÖDEL J, JO W, SEIFERT K T P, et al. Perspective on the development of lead-free piezoceramics.J. Am. Ceram. Soc., 2009, 92(6): 1153-1177. |
[2] | JAFFE B, COOK W R, JAFFE H. Piezoelectric Ceramics. London: Academic, 1971: 253-269. |
[3] | TAKAHASHI H, NUMAMOTO Y, TANI J, et al.Considerations for BaTiO3 ceramics with high piezoelectric properties fabricated by microwave sintering.Jpn. J. Appl. Phys., 2008, 47(11): 8468-8471. |
[4] | KARAKI T, YAN K, MIYAMOTO T, et al.Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder.Jpn. J. Appl. Phys., 2007, 46(4-7): L97-L98. |
[5] | WADA S, TAKEDA K, MURAISHI T, et al.Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties.Jpn. J. Appl. Phys., 2007, 46(10S): 372-376. |
[6] | SHAO S F, ZHANG J L, ZHANG Z, et.al. High piezoelectric properties and domain configuration in BaTiO3 ceramics obtained through solid-state reaction route. J. Phys D: Appl. Phys., 2008, 41(12): 125408-1-5. |
[7] | ZHENG P, ZHANG J L, TAN Y Q, et.al. Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics.Acta Mater., 2012, 60(s13/14): 5022-5030. |
[8] | ZHANG J L, JI P F, WU Y Q, et al. Strong piezoelectricity exhibited by large-grained BaTiO3 ceramics. Appl. Phys. Lett., 2014, 104(22): 222909-1-4. |
[9] | WU Y Q, ZHANG J L, TAN Y Q, et al.Notable grain-size dependence of converse piezoelectric effect in BaTiO3 ceramics.Ceram. Int., 2016, 42: 9815-9820. |
[10] | TAN Y Q, ZHANG J L, WU Y Q, et al. Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci. Rep., 2015, 5: 9953-1-9. |
[11] | ZHENG P, ZHANG J L, SHAO S F, et al. Piezoelectric properties and stabilities of CuO-modified Ba(Ti, Zr)O3ceramics, Appl. Phys.Lett., 2009, 94(3): 032902-1-4. |
[12] | ZHANG J L, ZHANG Z, SHAO S F, et al, High piezoelectric performance and relevant physical mechanism of CuO-modified Ba(Ti0.96Sn0.04)O3 ceramics.J. Adv. Dielectr., 2011, 01(1): 79-84. |
[13] | LI W, XU Z J, CHU C Q, et al, Temperature stability in Dy-doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 lead-free ceramics with high piezoelectric coefficient.J. Am. Ceram. Soc., 2011, 94(10): 3181-3183. |
[14] | WANG H, WU J.Phase transition, microstructure, and electrical properties of Ca, Zr, and Sn-modified BaTiO3 lead-free ceramics.J. Alloys Compd., 2014, 615(9): 969-974. |
[15] | CHEN M, XU Z, CHU R, et al.Y2O3-modified Ba(Ti0.96Sn0.04)O3 ceramics with improved piezoelectricity and raised Curie temperature.Mater. Res. Bull., 2014, 59(16): 305-310. |
[16] | 关振铎, 张中太, 焦金生. 无机材料物理性能. 北京: 清华大学出版社, 1992: 33-35. |
[17] | DEVRIES R C, BURKE J E.Microstructure of barium titanate ceramics.J. Am. Ceram. Soc., 1957, 40(40): 200-206. |
[18] | TAKAHASHI H, NUMAMOTO Y, TANI J, et al.Domain properties of high-performance barium titanate ceramics.Jpn. J. Appl. Phys., 2007, 46: 7044-7047. |
[19] | ARLT G, SASKO P.Domain configuration and equilibrium size of domains in BaTiO3 ceramics.J. Appl. Phys., 1980, 51(9): 4956-4960. |
[20] | ARLT G.Twinning in ferroelectric and ferroelastic ceramics: stress relief.J. Mater. Sci. , 1990, 25(6): 2655-2666. |
[21] | ZHANG Q M, WANG H, KIM N, et al.Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl.Phys., 1994, 75(1): 454-459 . |
[22] | DEMARTIN M, DAMJANOVIC D.Dependence of the direct piezoelectric effect in coarse and fine grain barium titanate ceramics on dynamic and static pressure.Appl. Phys. Lett., 1996, 68(21): 3046-3048. |
[23] | GHOSH D, SAKATA A, CARTER J, et al.Domain wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes.Adv. Funct. Mater., 2014, 24: 885-896. |
[24] | CHEN DA-REN, LI GUO-RONG, YIN QING-RUI.Piezoelectric constants measurement from converse piezoelectric effect and piezoelectric ceramic actuators.Journal of Inorganic Materials, 1997, 12(6): 861-866. |
[25] | TAN Y, ZHANG J, WANG C, et al.Enhancement of electric field-induced strain in BaTiO3 ceramics through grain size optimization.Phys. Status Solidi, 2015, 212(2): 433-438. |
[1] | HUANG Jianfeng, LIANG Ruihong, ZHOU Zhiyong. Effects of W/Cr Co-doping on the Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2024, 39(8): 887-894. |
[2] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[3] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[4] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[5] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[6] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[7] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[8] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[9] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[10] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[11] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[12] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[13] | CHEN Lei, HU Hailong. Evolution of Electric Field and Breakdown Damage Morphology for Flexible PDMS Based Dielectric Composites [J]. Journal of Inorganic Materials, 2023, 38(2): 155-162. |
[14] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[15] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||