| [1] |
XU Y, YAN J, ZHOU W, et al. Development of high performance thermoelectric polymers via doping or dedoping engineering. Chemistry-An Asian Journal, 2024, 19(15): e202400329.
DOI
URL
|
| [2] |
ABBASI M S, SULTANA R, AHMED I, et al. Contemporary advances in organic thermoelectric materials: fundamentals, properties, optimization strategies, and applications. Renewable and Sustainable Energy Reviews, 2024, 200: 114579.
DOI
URL
|
| [3] |
XIAO R, ZHOU X, ZHANG C, et al. Organic thermoelectric materials for wearable electronic devices. Sensors, 2024, 24(14): 4600.
DOI
URL
|
| [4] |
梁子材, 谢美丽, 张菊华, 等. 功能聚酞菁化合物的进展. 化工新型材料, 1986, 10: 5.
|
| [5] |
YANG C, JIANG K, ZHENG Q, et al. Chemically stable polyarylether-based metallophthalocyanine frameworks with high carrier mobilities for capacitive energy storage. Journal of the American Chemical Society, 2021, 143(42): 17701.
DOI
PMID
|
| [6] |
GOMEZ-ROMERO P, LEE Y S, KERTESZ M. Band structure calculation of extended poly(copper phthalocyanine) one-dimensional and two-dimensional polymers. Inorganic Chemistry, 1988, 27(20): 3672.
DOI
URL
|
| [7] |
ALIABAD H A R, BASHI M. Cobalt phthalocyanine polymer for optoelectronic and thermoelectric applications. Journal of Materials Science: Materials in Electronics, 2019, 30(20): 18720.
DOI
|
| [8] |
VENKATACHALAM S, KRISHNAMURTHY V N. Polymeric pthalocyanines and other electrically conducting polymers for electronic and photonic applications: a review. Indian Journal of Chemistry, 1994, 33A(6): 506.
|
| [9] |
ZHANG Y, ZHANG X, JIAO L, et al. Conductive covalent organic frameworks of polymetallophthalocyanines as a tunable platform for electrocatalysis. Journal of the American Chemical Society, 2023, 145(44): 24230.
DOI
URL
|
| [10] |
LI J, HUCKLEBY A B, ZHANG M. Polymer-based thermoelectric materials: a review of power factor improving strategies. Journal of Materiomics, 2022, 8(1): 204.
DOI
URL
|
| [11] |
NANDIHALLI N, LIU C J, MORI T. Polymer based thermoelectric nanocomposite materials and devices: fabrication and characteristics. Nano Energy, 2020, 78: 105186.
DOI
URL
|
| [12] |
YANG J, ZHANG H, HU N, et al. Recent advances in carbon nanotubes-based organic thermoelectric composites-a mini review. Materials Today Nano, 2025, 29: 100590.
DOI
URL
|
| [13] |
JI D, LI B, RAJ B T, et al. In situ surface polymerization of PANI/SWCNT bilayer film: effective composite for improving seebeck coefficient and power factor. Advanced Materials Interfaces, 2025, 12(1): 2400566.
DOI
URL
|
| [14] |
WEI S, ZHANG Y, LV H, et al. SWCNT network evolution of PEDOT:PSS/SWCNT composites for thermoelectric application. Chemical Engineering Journal, 2022, 428: 131137.
DOI
URL
|
| [15] |
WANG M, YAO Q, QU S, et al. Preparation and thermoelectric properties of semiconducting single-walled carbon nanotubes/ regioregular poly(3-dodecylthiophene) composite films. Polymers, 2020, 12(11): 2720.
DOI
URL
|
| [16] |
CHEN Y, QU S, SHI W, et al. Enhanced thermoelectric properties of copper phthalocyanine/single-walled carbon nanotubes hybrids. Carbon, 2020, 159: 471.
DOI
URL
|
| [17] |
MCKEOWN N B. Phthalocyanine-containing polymers. Journal of Materials Chemistry, 2000, 10(9): 1979.
DOI
URL
|
| [18] |
FARAHMAND S, GHIACI M, RAZAVIZADEH J S. Copper phthalocyanine as an efficient and reusable heterogeneous catalyst for direct hydroxylation of benzene to phenol under mild conditions. Inorganica Chimica Acta, 2019, 484: 174.
DOI
URL
|
| [19] |
GUO X, LIU J, CAO L, et al. Nonvolatile memory device based on copper polyphthalocyanine thin films. ACS Omega, 2019, 4(6): 10419.
DOI
PMID
|
| [20] |
LOZZI L, SANTUCCI S, BUSSOLOTTI F, et al. Investigation on copper phthalocyanine/multiwalled carbon nanotube interface. Journal of Applied Physics, 2008, 104(3): 033701.
DOI
URL
|
| [21] |
UHLÍŘOVÁ T, MOJZEŠ P, MELNIKOVÁ Z, et al. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: manifestations of two mechanisms of graphene-enhanced Raman scattering. Journal of Raman Spectroscopy, 2017, 48(10): 1270.
DOI
URL
|
| [22] |
NGUYEN D, KANG G, CHIANG N, et al. Probing molecular- scale catalytic interactions between oxygen and cobalt phthalocyanine using tip-enhanced Raman spectroscopy. Journal of the American Chemical Society, 2018, 140(18): 5948.
DOI
URL
|
| [23] |
ZHOU W, VAVRO J, NEMES N M, et al. Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes. Physical Review B, 2005, 71(20): 205423.
DOI
URL
|
| [24] |
EPSTEIN A, WILDI B S. Electrical properties of poly-copper phthalocyanine. The Journal of Chemical Physics, 1960, 32(2): 324.
DOI
URL
|