无机材料学报

• 研究论文 •    

SiCp掺杂Cf/Li2O-Al2O3-SiO2复合材料耐烧蚀性能研究

林元伟1, 景昭2, 陈鹤拓1, 李佳恒1,4, 覃显鹏1, 周国红1,3, 王士维1,3   

  1. 1.中国科学院上海硅酸盐研究所, 关键陶瓷材料全国重点实验室, 上海, 200050;
    2.北京航天长征飞行器研究所, 北京, 100076;
    3.中国科学院大学材料与光电研究中心, 北京, 100049;
    4.上海大学微电子学院, 上海, 200444
  • 收稿日期:2024-11-26 修回日期:2025-02-19
  • 通讯作者: 陈鹤拓, 副研究员. E-mail: chenhetuo@mail.sic.ac.cn; 周国红,研究员. E-mail: sic_zhough@mail.sic.ac.cn
  • 作者简介:林元伟(1997-), 男,硕士研究生. E-mail: linyuanwei19@mails.ucas.ac.cn

Ablative Properties of Cf/Li2O-Al2O3-SiO2 Composites Doped with SiCp

LIN Yuanwei1, JING Zhao2, CHEN Hetuo1, LI Jiaheng1,4, QIN Xianpeng1, ZHOU Guohong1,3, WANG Shiwei1,3   

  1. 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
    2. Beijing Institute of Space Long March Vehicle, Beijing 100076, China;
    3. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing 100049, China;
    4. School of Microelectronics, Shanghai University, Shanghai 200444, China
  • Received:2024-11-26 Revised:2025-02-19
  • Contact: CHEN Hetuo, associate professor. E-mail: chenhetuo@mail.sic.ac.cn; ZHOU Guohong, professor. E-mail: sic_zhough@mail.sic.ac.cn
  • About author:LIN Yuan-Wei (1997-), male, Master Candidate. E-mail: linyuanwei19@mails.ucas.ac.cn
  • Supported by:
    National Natural Science Foundation of China (U23A6014; 52103357)

摘要: 在高热流密度烧蚀环境中,飞行器的内外温度迅速升高,使传统高导热材料无法有效保护内部金属部件。本研究通过浆液浸渍缠绕和热压烧结法制备了SiC颗粒(SiCp)掺杂的连续碳纤维增强低导热Li2O-Al2O3-SiO2(Cf/LAS)玻璃陶瓷复合材料,研究了基体结晶度对复合材料在超高热流密度下烧蚀性能的影响。利用复合材料的SiO2气化吸热和低导热特性,有效降低了复合材料表面和内部温度,从而保障飞行器和电子器件的安全运行。结果显示,在20 MW/m2热流密度下,10% SiC颗粒掺杂的复合材料平均线性烧蚀率显著降低。透射电镜结果表明,掺杂后的玻璃基体结晶度提高,内应力降低,晶格畸变减少,增强了复合材料的高温性能。然而,当SiC掺杂量过高时,结晶度降低,烧蚀性能变差。最终,在30 MW/m2热流密度下,10% SiC颗粒掺杂的Cf/LAS复合材料平均线性烧蚀率与商用碳/碳复合材料相当,且具有较低的导热性和较高的抗弯强度。这种新型高性能Cf/LAS复合材料价格低廉,适合大规模生产,有望广泛应用于高超音速飞行器。

关键词: 耐烧蚀Cf/LAS复合材料, SiC掺杂, 玻璃基体结晶度, 长程有序

Abstract: In the high heat flux ablative environment, the temperature of interior and exterior of the aircraft rises rapidly, rendering traditional high thermal conductivity materials ineffective for protecting internal metal components. In this study, continuous carbon fiber reinforced low thermal conductivity Li2O-Al2O3-SiO2 (Cf/LAS) glass ceramic composites, doped with SiC particles (SiCp), were prepared by slurry immersion winding and hot pressing sintering. The effect of matrix crystallinity on the ablative properties of the composites under ultra-high heat flux was investigated. By utilizing the heat absorption and low thermal conductivity characteristics associated with SiO2 gasification within composite materials, both surface and internal temperatures of these materials are effectively reduced, thereby ensuring the safe operation of aircraft and electronic devices. Results indicate that the average linear ablation rate of composites doped with 10% mass fraction of SiC particles significantly decreases at a heat flux of 20 MW/m². TEM observation reveals that the doped glass matrix exhibits increased crystallinity, reduced internal stress, and minimized lattice distortion, thereby enhancing the composites’ high-temperature performance. However, excessive SiCp doping leads to reduced crystallinity and deteriorated ablation performance. Ultimately, the average linear ablation rate of Cf/LAS composites with 10% SiC particles at 30 MW/m² heat flux is comparable to that of commercial carbon/carbon composites, while also providing lower thermal conductivity and higher bending strength. This novel high-performance Cf/LAS composite is cost-effective and suitable for mass production, offering promising potential for widespread application in hypersonic vehicles.

Key words: ablation-resistant Cf/LAS composites, SiC doping, crystallinity of glass matrix, long-range ordered

中图分类号: