无机材料学报 ›› 2025, Vol. 40 ›› Issue (2): 128-144.DOI: 10.15541/jim20240355 CSTR: 32189.14.10.15541/jim20240355
陶桂龙1,2(), 支国伟2, 罗添友2, 欧阳佩东2, 衣新燕3, 李国强1,2,3(
)
收稿日期:
2024-07-27
修回日期:
2024-09-12
出版日期:
2025-02-20
网络出版日期:
2024-11-25
通讯作者:
李国强, 教授. E-mail: msgli@scut.edu.cn作者简介:
陶桂龙(1988-), 男, 博士研究生. E-mail: ictgl@mail.scut.edu.cn
基金资助:
TAO Guilong1,2(), ZHI Guowei2, LUO Tianyou2, OUYANG Peidong2, YI Xinyan3, LI Guoqiang1,2,3(
)
Received:
2024-07-27
Revised:
2024-09-12
Published:
2025-02-20
Online:
2024-11-25
Contact:
LI Guoqiang, professor. E-mail: msgli@scut.edu.cnAbout author:
TAO Guilong (1988-), male, PhD candidate. E-mail: ictgl@mail.scut.edu.cn
Supported by:
摘要:
随着通信技术升级以及5G通信应用的驱动, 各种智能设备所需的滤波器数量激增, 促进了滤波器市场的繁荣, 但对其性能要求也越来越高, 例如大带宽、高频率、高功率容量、微型化、集成化以及低成本等指标是学术界与产业界重点关注的方向, 而基于薄膜体声波谐振器(Thin Film Bulk Acoustic Resonator, FBAR)技术的FBAR滤波器已成为最有前景的滤波器之一。另外, 当前空腔型FBAR滤波器已取得了一定的商业成功, 但是仍面临性能不足、工艺复杂、成本略高、技术受限等困境。为此, 本文试图从器件理论研究与结构优化、高性能压电材料制备与优化、新型工艺开发及技术融合三方面对FBAR滤波器的相关问题与关键技术进行综述, 旨在为该研究领域的学者梳理FBAR滤波器技术进阶与迭代的脉络, 以期为未来研究的路径与方向提供若干启发性思考。
中图分类号:
陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144.
TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter[J]. Journal of Inorganic Materials, 2025, 40(2): 128-144.
Filter type | SAW filter | BAW filter |
---|---|---|
Characteristic | High stability, low insertion loss (2-4 dB) | High stability, low insertion loss (0.8-1.5 dB), high power tolerance |
Applicable frequency range | 10 MHz-3 GHz | 1.5-6 GHz, the maximum up to over 10 GHz |
Advantage | Smaller than the traditional ceramic filter, flexible, mature technology, high reliability | Suitable for high frequency, insensitive to temperature changes, miniaturized vertical propagation in acoustic wave, decreased size according to frequency increase |
Limitation | Poor thermal stability, decreased Q-value when operating frequency exceeds 1.5 GHz | High manufacturing cost, complex manufacturing process |
表1 SAW滤波器和BAW滤波器的技术特点
Table 1 Technical characteristics of SAW filter and BAW filter
Filter type | SAW filter | BAW filter |
---|---|---|
Characteristic | High stability, low insertion loss (2-4 dB) | High stability, low insertion loss (0.8-1.5 dB), high power tolerance |
Applicable frequency range | 10 MHz-3 GHz | 1.5-6 GHz, the maximum up to over 10 GHz |
Advantage | Smaller than the traditional ceramic filter, flexible, mature technology, high reliability | Suitable for high frequency, insensitive to temperature changes, miniaturized vertical propagation in acoustic wave, decreased size according to frequency increase |
Limitation | Poor thermal stability, decreased Q-value when operating frequency exceeds 1.5 GHz | High manufacturing cost, complex manufacturing process |
图1 基于L型结构的FBAR滤波器的工作原理
Fig. 1 Operating principle of the L-type FBAR filter (a) Electrical characteristics of the idealized FBAR; (b) Fundamental unit of the L-type structure; (c) Transmission response
图2 FBAR与压电薄膜的等效电路模型
Fig. 2 FBAR and the equivalent circuit model of piezoelectric thin film (a) Schematic structure of FBAR; (b) Mason equivalent circuit model of the piezoelectric thin film
图4 基于AlN薄膜的BAW谐振器[25]
Fig. 4 BAW resonator based on AlN thin film[25] (a) Nonlinear circuit model; (b) Second harmonic response; (c) Third harmonic response
图7 BAW谐振器离散化模型及电极馈电引线[36]
Fig. 7 Discretized model and electrode feed lines of BAW resonator[36] (a) Schematic representation of discretized resonator model; (b) Two resonators in series and connected by broad lead; (c) Single resonator connected by narrow lead
图8 基于单晶和多晶AlN的3.55 GHz FBAR滤波器[54]
Fig. 8 3.55 GHz FBAR filter based on single-crystal and polycrystalline AlN[54] (a) Measured power sweep at right band edge of the filters; (b) Measured insertion loss of the filters versus input power
图11 基于Al0.8Sc0.2N薄膜制备的FBAR滤波器的实验结果[65]
Fig. 11 Experimental results of FBAR filter fabricated with Al0.8Sc0.2N film[65] (a) Transmission response of FBAR filter; (b) Return loss of the FBAR filter
图12 Sc掺杂量对Al1−xScxN薄膜质量及表面形貌的影响[69]
Fig. 12 Effect of Sc-dopant concentration on crystal quality and surface morphology of Al1−xScxN thin films[69] (a-c) TEM dark-field images and electron diffraction patterns for 10%, 31%, and 42% Sc content; (d-f) Corresponding SEM plane views
图13 两步法(Sample 1)和单步PVD工艺(Sample 2)所获FBAR的性能对比[86]
Fig. 13 Performance comparison of FBAR obtained by two-step (Sample 1) and single PVD (Sample 2) processes[86] (a) Frequency impedance characteristic curves; (b) Smith chart
图14 SABAR工艺示意图[87]
Fig. 14 Schematic diagram for SABAR process[87] (a) Combination of PLD and MOCVD AlN film; (b) Bottom electrode and bonding layer sputtered on top of AlN layer; (c) Resonator structure
图15 结合FBAR与IPD技术的N77频段混合滤波器[88]
Fig. 15 N77-band hybrid filter based on FBAR and IPD technology[88] (a) Design schematic; (b) Simulated transmission response curve
[14] | FELD D A, PARKER R, RUBY R, et al. After 60 years: a new formula for computing quality factor is warranted. 2008 IEEE Ultrasonics Symposium, Beijing, 2008: 431. |
[15] | UEDA M, NISHIHARA T, TANIGUCHI S, et al. Film bulk acoustic resonator using high-acoustic-impedance electrodes. Japanese Journal of Applied Physics, 2007, 46(7S): 4642. |
[16] | KAITILA J. 3C-1 review of wave propagation in BAW thin film devices-progress and prospects. 2007 IEEE Ultrasonics Symposium Proceedings, New York, 2007: 120. |
[17] | LIN Y C, HONG C R, CHUANG H A. Fabrication and analysis of ZnO thin film bulk acoustic resonators. Applied Surface Science, 2008, 254(13): 3780. |
[18] | KAMOHARA T, AKIYAMA M, KUWANO N. Influence of molybdenum bottom electrodes on crystal growth of aluminum nitride thin films. Journal of Crystal Growth, 2008, 310(2): 345. |
[19] | NOR N I M, SHAH K, SINGH J J, et al. Film bulk acoustic wave resonator (FBAR) filter for Ku-band transceiver. Nanotechnology Conference and Expo (NSTI-Nanotech 2013), Washington, 2013: 169. |
[20] | CLEMENT M, IBORRA E, OLIVARES J, et al. DCS Tx filters using AlN resonators with iridium electrodes. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2010, 57(3): 518. |
[21] | AIGNER R. MEMS in RF-filter applications: thin film bulk- acoustic-wave technology. 13th International Conference on Solid- State Sensors, Actuators and Microsystems, Seoul, 2005: 5. |
[22] | LI Y, GONG K, WONG Y P, et al. Comparative study of piston mode designs for temperature-compensated surface acoustic wave resonators using SiO2/LiNbO3 structure. Japanese Journal of Applied Physics, 2022, 61(SG): SG1020. |
[23] | NAKAGAWA R, SUZUKI T, SHIMIZU H, et al. Discussion about generation mechanisms of third-order nonlinear signals in surface acoustic wave resonators based on simulation. Japanese Journal of Applied Physics, 2016, 55(7S1): 07KD02. |
[24] | UEDA M, IWAKI R, NISHIHARA R, et al. Nonlinear distortion of acoustic devices for radio-frequency front-end circuit and its suppression. Japanese Journal of Applied Physics, 2010, 49(7S): 07HD12. |
[25] | HASHIMOTO K Y, LI X, BAO J, et al. Perturbation analysis of nonlinearity in radio frequency bulk acoustic wave resonators using mass-spring model. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2020, 67(7): 1479. |
[26] | PANG X N, YONG Y K. Simulation of nonlinear resonance, amplitude-frequency, and harmonic generation effects in SAW and BAW devices. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2019, 67(2): 422. |
[27] | SCHNEIDER J D, LU T, TIWARI S, et al. Frequency conversion through nonlinear mixing in acoustic waves. Journal of Applied Physics, 2020, 128(6): 064105. |
[28] | ASSILA N, KADOTA M, OHASHI Y, et al. High velocity lamb waves in LiTaO3 thin plate for high frequency filters. 2016 IEEE International Frequency Control Symposium (IFCS), New Orleans, 2016: 333. |
[29] | HE Y, WONG Y P, WU T, et al. Full 3D FEM simulation of thickness shear bulk acoustic resonators on LN assisted by hierarchical cascading technique. 2021 IEEE International Ultrasonics Symposium (IUS), Xi'an, 2021: 1. |
[30] | QIU L, LI X Y, MATSUOKA N, et al. Emphasis mechanism of nonlinear responses caused by transverse modes in RF BAW devices. Japanese Journal of Applied Physics, 2020, 59(SK): SKKC02. |
[31] | NGUYEN N T B, JOHANNESSEN A, HANKE U. Design of high-Q thin film bulk acoustic resonator using dual-mode reflection. 2014 IEEE International Ultrasonics Symposium, Chicago, 2014: 487. |
[32] | LI X, BAO J, HUANG Y, et al. Use of double-raised-border structure for quality factor enhancement of type II piston mode FBAR. Microsystem Technologies, 2018, 24(7): 2991. |
[33] | NGUYEN N, JOHANNESSEN A, ROOTH S, et al. A design approach for high-Q FBARs with a dual-step frame. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2018, 65(9): 1717. |
[34] | REN J, CHU H, BAI Y, et al. Research and design of high sensitivity FBAR micro-mass sensors. 2020 Asia Conference on Geological Research and Environmental Technology, Kamakura, 2021: 042014. |
[35] | SETOODEH S, KEMIKTARAK U, BAYATPUR F, et al. A high power circuit model of an FBAR resonator for use in filter design. 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, 2019: 2169. |
[36] | FATTINGER M, KREUZER S. BAW filters for 5G: lead geometry impact on current distribution in resonators. 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Linz, 2020: 1. |
[37] | LIU Y, SUN K, MA J, et al. Design and fabrication of temperature-compensated film bulk acoustic resonator filter based on the stress compensation effect. Coatings, 2022, 12(8): 1126. |
[38] | WU X, XU L, SHI G, et al. Design and modeling of film bulk acoustic resonator considering temperature compensation for 5G communication. Analog Integrated Circuits and Signal Processing, 2024, 118(2): 219. |
[39] | HAOPENG W, CAI X, WU Y, et al. An investigation on extraction of material parameters in longitudinal mode of FBAR. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(6): 1024. |
[40] | NOR N I M, HASNI A H M, KHALID N, et al. Carbon nanotube as electrode in film bulk acoustic wave resonator for improved performance. International Conference on Applied Photonics and Electronics 2019 (InCAPE 2019), Putrajaya, 2020: 020021. |
[41] | LU R, YANG Y, LINK S, et al. A 1 resonators in 128° Y-cut lithium niobate with electromechanical coupling of 46.4%. Journal of Microelectromechanical Systems, 2020, 29(3): 313. |
[42] | SATOH Y, NISHIHARA T, YOKOYAMA T, et al. Development of piezoelectric thin film resonator and its impact on future wireless communication systems. Japanese Journal of Applied Physics, 2005, 44(5A): 2883. |
[43] | WANG L P, GINSBURG E, GERFERS F, et al. Sputtered AlN thin films for piezoelectric MEMS devices. SENSORS, 2006 IEEE, Daegu, 2006: 10. |
[44] | MAHON S. The 5G effect on RF filter technologies. IEEE Transactions on Semiconductor Manufacturing, 2017, 30(4): 494. |
[45] | AIGNER R, FATTINGER G, SCHAEFER M, et al. BAW filters for 5G bands. 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, 2018: 1451. |
[46] | LI G, KIM T W, INOUE S, et al. Epitaxial growth of single- crystalline AlN films on tungsten substrates. Applied Physics Letters, 2006, 89(24): 241905. |
[47] | YANG H, WANG W, LIU Z, et al. Epitaxial growth of 2 inch diameter homogeneous AlN single-crystalline films by pulsed laser deposition. Journal of Physics D-Applied Physics, 2013, 46(10): 105101. |
[48] | LIN Y, YANG M, WANG W, et al. High-quality crack-free GaN epitaxial films grown on Si substrates by a two-step growth of AlN buffer layer. CrystEngComm, 2016, 18(14): 2446. |
[49] | JIANGHUA L, WENLIANG W, YULIN Z, et al. AlN/nitrided sapphire and AlN/non-nitrided sapphire hetero-structures epitaxially grown by pulsed laser deposition: a comparative study. Vacuum, 2017, 143: 241. |
[50] | WANG H, LI Z, WANG W, et al. Growth mechanisms of GaN epitaxial films grown on ex situ low-temperature AlN templates on Si substrates by the combination methods of PLD and MOCVD. Journal of Alloys and Compounds, 2017, 718: 28. |
[51] | SHEALY J B, SHEALY J B, PATEL P, et al. Single crystal aluminum nitride film bulk acoustic resonators. 2016 IEEE Radio and Wireless Symposium (RWS), Austin, 2016: 16. |
[52] | SHEALY J B, VETURY R, GIBB S R, et al. Low loss, 3.7 GHz wideband BAW filters, using high power single crystal AlN-on-SiC resonators. 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, 2017: 1476. |
[53] | VETURY R, HODGE M D, SHEALY J B. High power, wideband single crystal XBAW technology for sub-6 GHz micro RF filter applications. 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, 2018: 206. |
[54] | SHEN Y, ZHANG R, VETURY R, et al. 40.6 watt, high power 3.55 GHz single crystal XBAW RF filters for 5G infrastructure applications. 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, 2020: 1. |
[55] | DING R, XUAN W, DONG S, et al. The 3.4 GHz BAW RF filter based on single crystal AlN resonator for 5G application. Nanomaterials, 2022, 12(17): 3082. |
[56] | QIN R, ZHOU C, DOU W, et al. 3.3 GHz BAW resonators fabricated on single crystal AlN templates. 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, 2023: 1. |
[57] | AKIYAMA M, KAMOHARA T, KANO K, et al. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Advanced Materials, 2009, 21(5): 593. |
[58] | MOREIRA M, BJURSTRÖM J, KATARDJEV I, et al. Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications. Vacuum, 2011, 86(1): 23. |
[59] | UMEDA K, KAWAI H, HONDA A, et al. Piezoelectric properties of ScAlN thin films for piezo-MEMS devices. 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, 2013: 733. |
[60] | SANO K H, KARASAWA R, YANAGITANI T. High electromechanical coefficient kt2=19% thick ScAlN piezoelectric films for ultrasonic transducer in low frequency of 80 MHz. 2017 IEEE International Ultrasonics Symposium (IUS), Washington, 2017: 1. |
[61] | PARK M, WANG J, DARGIS R, et al. Super high-frequency scandium aluminum nitride crystalline film bulk acoustic resonators. 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, 2019: 1689. |
[62] | MOE C, OLSSON R H, PATEL P, et al. Highly doped AlScN 3.5 GHz XBAW resonators with 16% keff2 for 5G RF filter applications. 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, 2020: 1. |
[63] | WANG J, PARK M, MERTIN S, et al. A film bulk acoustic resonator based on ferroelectric aluminum scandium nitride films. Journal of Microelectromechanical Systems, 2020, 29(5): 741. |
[64] | KIM D, MORENO G, BI F, et al. Wideband 6 GHz RF filters for Wi-Fi 6E using a unique BAW process and highly Sc-doped AlN thin film. 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, 2021: 207. |
[65] | ZOU Y, GAO C, ZHOU J, et al. Aluminum scandium nitride thin-film bulk acoustic resonators for 5G wideband applications. Microsystems & Nanoengineering, 2022, 8(1): 124. |
[66] | DOU W, ZHOU C, QIN R, et al. Super-high-frequency bulk acoustic resonators based on aluminum scandium nitride for wideband applications. Nanomaterials, 2023, 13(20): 2737. |
[67] | MOMIDA H, TESHIGAHARA A, OGUCHI T. Strong enhancement of piezoelectric constants in ScxAl1-xN: first-principles calculations. AIP Advances, 2016, 6(6): 065006. |
[68] | BOGNER A, TIMME H J, BAUDER R, et al. Impact of high Sc content on crystal morphology and RF performance of sputtered Al1-xScxN SMR BAW. 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, 2019: 706. |
[69] | MERTIN S, HEINZ B, RATTUNDE O, et al. Piezoelectric and structural properties of c-axis textured aluminium scandium nitride thin films up to high scandium content. Surface & Coatings Technology, 2018, 343: 2. |
[70] | GREEN M L, CHOI C L, HATTRICK-SIMPERS J R, et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Applied Physics Reviews, 2017, 4(1): 011105. |
[71] | LIU Y H, HU Z H, SUO Z G, et al. High-throughput experiments facilitate materials innovation: a review. Science China (Technological Sciences), 2019, 62(4): 521. |
[72] | DE PABLO J J, JACKSON N E, WEBB M A, et al. New frontiers for the materials genome initiative. npj Computational Materials, 2019, 5(1): 41. |
[73] | WANG R, XU C, DONG R, et al. A secured big-data sharing platform for materials genome engineering: state-of-the-art, challenges and architecture. Future Generation Computer Systems-The International Journal of eScience, 2023, 142: 59. |
[74] | HIMANEN L, GEURTS A, FOSTER A S, et al. Data-driven materials science: status, challenges, and perspectives. Advanced Science, 2019, 6(21): 1900808. |
[75] | TAN C, WU H, YANG L, et al. Cutting edge high-throughput synthesis and characterization techniques in combinatorial materials science. Advanced Materials Technologies, 2024, 9(10): 2302038. |
[76] | HATTRICK-SIMPERS J R, GREGOIRE J M, KUSNE A G. Perspective: composition-structure-property mapping in high-throughput experiments: turning data into knowledge. APL Materials, 2016, 4(5): 2832. |
[77] | CASUKHELA R, VIJAYAN S, JINSCHEK J R, et al. A framework for the optimal selection of high-throughput data collection workflows by autonomous experimentation systems. Integrating Materials and Manufacturing Innovation, 2022, 11(4): 557. |
[78] | LUDWIG A. Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. npj Computational Materials, 2019, 5(1): 70. |
[79] | MANNA S, BRENNECKA G L, STEVANOVIC V, et al. Tuning the piezoelectric and mechanical properties of the AlN system via alloying with YN and BN. Journal of Applied Physics, 2017, 122(10): 105101. |
[1] |
CHAUHAN V, HUCK C, FRANK A, et al. Enhancing RF bulk acoustic wave devices: multiphysical modeling and performance. IEEE Microwave Magazine, 2019, 20(10): 56.
DOI |
[2] | WU Z, SHI B, LI Y, et al. Use of heavy dielectric materials in solidly mounted A 1 mode resonators based on lithium niobate. Japanese Journal of Applied Physics, 2022, 61(SG): SG1001. |
[3] | LI M, EL-HAKIKI M, KALIM D, et al. A fully matched LTE-A carrier aggregation quadplexer based on BAW and SAW technologies. 2014 IEEE International Ultrasonics Symposium, Chicago, 2014: 77. |
[4] | CHEN J C, YANG H Y, WU J W, et al. Widening the data pipeline: a carrier aggregation BAW quadplexer module. IEEE Microwave Magazine, 2018, 19(2): 62. |
[5] | LIU Y, CAI Y, ZHANG Y, et al. Materials, design, and characteristics of bulk acoustic wave resonator: a review. Micromachines, 2020, 11(7): 630. |
[6] | AIGNER R, FATTINGER G. 3G-4G-5G:how BAW filter technology enables a connected world. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, 2019: 523. |
[7] | LAKIN K M, KLINE G R, MCCARRON K T. High-Q microwave acoustic resonators and filters. IEEE Transactions on Microwave Theory and Techniques, 1993, 41(12): 2139. |
[8] | FATTINGER G G. BAW resonator design considerations-an overview. 2008 IEEE International Frequency Control Symposium, Honolulu, 2008: 762. |
[9] | HEEREN W, FATTINGER M, FATTINGER G, et al. Impact of thermo-mechanical stress on the TCF of WLP BAW filters. 2016 IEEE International Ultrasonics Symposium (IUS), Tours, 2016: 1. |
[10] | BI F Z, BARBER B P. Bulk acoustic wave RF technology. IEEE Microwave Magazine, 2008, 9(5): 65. |
[11] | RUBY R. The ‘how & why’ a deceptively simple acoustic resonator became the basis of a multi-billion dollar industry. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, 2017: 308. |
[12] | LAKIN K, BELSICK J, MCDONALD J, et al. Improved bulk wave resonator coupling coefficient for wide bandwidth filters. 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No. 01CH37263), Atlanta, 2001: 827. |
[13] | RUBY R. Review and comparison of bulk acoustic wave FBAR, SMR technology. 2007 IEEE Ultrasonics Symposium, New York, 2007: 1029. |
[80] |
HIRATA K, YAMADA H, UEHARA M, et al. First-principles study of piezoelectric properties and bonding analysis in (Mg, X, Al)N solid solutions (X = Nb, Ti, Zr, Hf). ACS Omega, 2019, 4(12): 15081.
DOI PMID |
[81] | HIRATA K, MORI Y, YAMADA H, et al. Significant enhancement of piezoelectric response in AlN by Yb addition. Materials, 2021, 14(2): 309. |
[82] | YU X, ZHU L, LI X, et al. Doping engineering for optimizing piezoelectric and elastic performance of AlN. Materials, 2023, 16(5): 1778. |
[83] | BOUSQUET M, PERREAU P, JOULIE A, et al. 4.2 GHz LiNbO3 film bulk acoustic resonator. 2021 IEEE International Ultrasonics Symposium (IUS), Xi'an, 2021: 1. |
[84] | REINHARDT A, BOUSQUET M, JOULIE A, et al. Lithium niobate film bulk longitudinal wave resonator. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Gainesville, 2021: 1. |
[85] | BOUSQUET M, BOREL E, JOULIE A, et al. LiNbO3 film bulk acoustic resonator for n79 band. 2022 IEEE International Ultrasonics Symposium (IUS), Venice, 2022: 1. |
[86] | YI X, ZHAO L, OUYANG P, et al. High-quality film bulk acoustic resonators fabricated on AlN films grown by a new two-step method. IEEE Electron Device Letters, 2022, 43(6): 942. |
[87] | OUYANG P, YI X, LI G. Single-crystalline bulk acoustic wave resonators fabricated with AlN film grown by a combination of PLD and MOCVD methods. IEEE Electron Device Letters, 2024, 45(4): 538. |
[88] | ZUO C, HE C, CHENG W, et al. Hybrid filter design for 5G using IPD and acoustic technologies. 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, 2019: 269. |
[89] | CHEN L, LING F. Addressing 5G NR filter challenges with hybrid technologies. 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, 2022: 1914. |
[90] | DING R, XUAN W, GAO F, et al. Compact and high steep skirts hybrid heterogeneous integrated N77 full band BAW filter based on band-stop theory. IEEE Electron Device Letters, 2024, 45(5): 793. |
[91] | BOGNER A, BAUDER R, TIMME H J, et al. All-pass based filter design using BAW resonators. 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, 2019: 1685. |
[92] | WU H P, WU Y L, LAI Z G, et al. A hybrid film-bulk- acoustic-resonator/coupled-line/transmission-line high selectivity wideband bandpass FBAR filter. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(8): 3389. |
[93] | WU H P, WU Y L, LAI Z G, et al. A hybrid filter with extremely wide bandwidth and high selectivity using FBAR network. IEEE Transactions on Circuits and Systems II-Express Briefs, 2022, 69(7): 3164. |
[94] | SUN J I, SUN S, YU X, et al. A deep neural network based tuning technique of lossy microwave coupled resonator filters. Microwave and Optical Technology Letters, 2019, 61(9): 2169. |
[95] | SALLAM T, ATTIYA A M. Convolutional neural network for coupling matrix extraction of microwave filters. Applied Computational Electromagnetics Society Journal, 2022, 37(7): 805. |
[96] | REN Y, DENG X, YOU Z, et al. 1-D multi-channel CNN with transfer functions for inverse electromagnetic behaviors modeling and design optimization of high-dimensional filters. Applied Intelligence, 2023, 54(1): 503. |
[97] | FU J, JIN J, YANG J, et al. Feature-assisted neural network surrogate-based multiphysics optimization for microwave filters. IEEE Microwave and Wireless Technology Letters, 2024, 34(5): 474. |
[98] | BALTEANU F, DROGI S, CHOI Y, et al. Multiple transmitter coexistence for 5G RF front end modules. 2021 51st European Microwave Conference (EuMC), London, 2022: 180. |
[99] | MOREIRA C P, SHIRAKAWA A A, KERHERVE E, et al. Design of a fully-integrated BiCMOS/FBAR reconfigurable RF receiver front-end. 18th annual symposium on Integrated circuits and system design, New York, 2005: 138. |
[100] | PILLAI G, ZOPE A A, TSAI M L, et al. 3-GHz BAW composite resonators integrated with CMOS in a single-chip configuration. 2016 IEEE International Frequency Control Symposium (IFCS), New Orleans, 2016: 1. |
[101] | GAO C, ZHANG M, JIANG Y, et al. A monolithic FBAR oscillator based on heterogeneous system-on-chip integration. 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, 2019: 895. |
[102] | CAMPANELLA H, QIAN Y, ROMERO C O, et al. Monolithic multiband MEMS RF front-end module for 5G mobile. Journal of Microelectromechanical Systems, 2020, 30(1): 72. |
[103] | YU H, WANG X, PENG X, et al. Performance optimization of FBAR filters with wafer-level chip-scale package using embedded matching inductors on multilayer PCB. 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou, 2022: 1. |
[1] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[2] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[3] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[4] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[5] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[6] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[7] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[8] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[9] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[10] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[11] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[12] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[13] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[14] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[15] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||