无机材料学报 ›› 2025, Vol. 40 ›› Issue (2): 113-127.DOI: 10.15541/jim20240302 CSTR: 32189.14.10.15541/jim20240302
• 综述 • 下一篇
孙树娟1(), 郑南南2, 潘昊坤2, 马猛1, 陈俊1, 黄秀兵2(
)
收稿日期:
2024-06-21
修回日期:
2024-09-12
出版日期:
2025-02-20
网络出版日期:
2024-09-27
通讯作者:
黄秀兵, 教授. E-mail: xiubinghuang@ustb.edu.cn作者简介:
孙树娟(1983-), 副教授. E-mail: sunshujuan@hebut.edu.cn
SUN Shujuan1(), ZHENG Nannan2, PAN Haokun2, MA Meng1, CHEN Jun1, HUANG Xiubing2(
)
Received:
2024-06-21
Revised:
2024-09-12
Published:
2025-02-20
Online:
2024-09-27
Contact:
HUANG Xiubing, professor. E-mail: xiubinghuang@ustb.edu.cnAbout author:
SUN Shujuan (1983-), associate professor. E-mail: sunshujuan@hebut.edu.cn
摘要:
为了应对能源供应紧张和环境保护的挑战, 探索和开发高效催化剂成为解决能源和环境问题的关键策略。单原子催化剂(Single-atom catalysts, SACs)作为近年来新兴的催化剂类型, 其独特的性质吸引了科研界的广泛关注。金属以单原子的形式负载在载体表面, 实现了电子、几何结构的特殊性以及原子利用率的最大化。在能源催化、环境催化、有机催化等多个领域, SACs都表现出优异的活性、选择性和稳定性, 为相关催化反应提供了强有力的支撑。更重要的是, SACs在贵金属利用方面展现出巨大的潜力。通过精确调控可以最大限度地提高贵金属的催化效率, 进而降低催化剂制造成本。因此, SACs的制备方法和作用机理成为国际催化领域的研究热点。本文综述了SACs的合成策略, 包括自下而上、自上而下和量子点交联/自组装, 具体介绍了共沉淀法、浸渍法、原子层沉积(Atomic layer deposition, ALD)法、高温原子热迁移法和高温热解法等制备SACs的研究进展, 并对SACs制备面临的挑战和未来前景进行了总结和展望。
中图分类号:
孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127.
SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts[J]. Journal of Inorganic Materials, 2025, 40(2): 113-127.
图3 Ir1/Ni LDH-T和Ir1/Ni LDH-V的OER机理研究[37]
Fig. 3 Research on OER mechanism for Ir1/Ni LDH-T and Ir1/Ni LDH-V[37] (a, b) Schematic structure models of Ir1/Ni LDH-T (a) and Ir1/Ni LDH-V (b) from top views; (c, d) Charge density differences of Ir atoms on Ir1/Ni LDH-T (c) and Ir1/Ni LDH-V (d) with yellow and cyan areas indicating electron accumulation and depletion, respectively; (e, f) Projected density of states (PDOS) in Ir1/Ni LDH-T (e) and Ir1/Ni LDH-V (f); (g) Free energy diagram of Ir1/Ni LDH-T and Ir1/Ni LDH-V with Ir as the active site; (h, i) Schematic OER pathways for Ir1/Ni LDH-T (h) and Ir1/Ni LDH-V (i) with pink, red, gray, and purple spheres representing H, O, Ni, and Ir atoms, respectively, and blue circles indicating reaction intermediates. Colorful figures are available on website
图4 (a~c)Pt SACs-ZIF-8-NC(30 s)、(d~f)Pt subclusters-ZIF-8-NC(1 min)和(g~i)Pt NPs-ZIF-8-NC(5 min)的高角度环形暗场扫描透射电子显微镜(HAADF-STEM)照片[57]
Fig. 4 High angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) images of (a-c) Pt SACs-ZIF-8-NC (30 s), (d-f) Pt subclusters-ZIF-8-NC (1 min), and (g-i) Pt NPs-ZIF-8-NC (5 min)[57] Colorful figures are available on website
图5 Pd原子分散催化剂(PdSA+C/g-C3N4)的构建策略示意图[68]
Fig. 5 Construction strategy of Pd atomically dispersed catalysts (PdSA+C/g-C3N4)[68] Colorful figure is available on website
图6 使用冷冻前驱体溶液(实验组)和使用液体前驱体溶液(对照组)制备SACs的对比示意图[63]
Fig. 6 Schematic preparation of SACs samples using frozen precursor solutions (experimental groups) and using liquid precursor solutions (control groups)[63]
图8 (a)Cu SACs/S−N[91]和(b)Bi-SACs-NS/C[92]的制备示意图
Fig. 8 Schematic preparation of (a) Cu SACs/S−N[91] and (b) Bi-SACs-NS/C[92] Colorful figures are available on website
图10 高温热解法制备示意图[115⇓-117]
Fig. 10 Schematic diagrams of high-temperature pyrolysis preparative method[115⇓-117] (a) Preparation of Fe SACs/GO[115]; (b) N-doped carbon atomization of Pd NPs/TiO2[116]; (c) Single atomic catalyst using atomic Co site and polarization carrier[117]. Colorful figures are available on website
图11 SACs合成过程示意图[120]
Fig. 11 Schematic illustration for synthesis processes of SACs[120] (a) Top-down synthesis strategy; (b) Bottom-up synthesis strategy; (c) Crosslinking and self-assembly based on graphene quantum dots (GQDs). Colorful figures are available on website
[1] | HUMAYUN M, ISRAR M, KHAN A, et al. State-of-the-art single-atom catalysts in electrocatalysis: from fundamentals to applications. Nano Energy, 2023, 113: 108570. |
[2] | WANG L, WEI J, LI Y, et al. A state-of-the-art review on heterogeneous catalysts-mediated activation of peracetic acid for micropollutants degradation: classification of reaction pathways, mechanisms, influencing factors and DFT calculation. Chem. Eng. J., 2023, 477: 147051. |
[3] | WANG H, WANG S, SONG Y, et al. Boosting electrocatalytic ethylene epoxidation by single atom modulation. Angew. Chem. Int. Ed., 2024, 63(20): e202402950. |
[4] |
QIAO B, WANG A, YANG X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem., 2011, 3(8): 634.
DOI PMID |
[5] |
LI Z, JI S, LIU Y, et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem. Rev., 2020, 120(2): 623.
DOI PMID |
[6] |
GATES B C, KATZ A, LIU J. Nested metal catalysts: metal atoms and clusters stabilized by confinement with accessibility on supports. Precis. Chem., 2023, 1(1): 3.
DOI PMID |
[7] | HE J, ZHAO Z H, LI J, et al. Hydrogenation of olefinic bonds in nitrile butadiene rubber on single-atom Pd1/CeO2-x catalysts with ultrahigh mass activity and stability. Chem. Eng. J., 2024, 487: 150427. |
[8] | DONG F, MENG Y, LING W, et al. Single atomic Pt confined into lattice defect sites for low-temperature catalytic oxidation of VOCs. Appl. Catal. B-Environ. Energy, 2024, 346: 123779. |
[9] |
ZHANG Z, WANG J, GE X, et al. Mixed plastics wastes upcycling with high-stability single-atom Ru catalyst. J. Am. Chem. Soc., 2023, 145(41): 22836.
DOI PMID |
[10] | ZHENG Y, YANG Q, WANG S, et al. Adjacent MnOx clusters enhance the hydroformylation activity of rhodium single-atom catalysts. Appl. Catal. B-Environ. Energy, 2024, 350: 123923. |
[11] | MIAO J, MA Y, WANG X, et al. Efficiently selective C(O-)-C bond cleavage for full lignocellulose upgrading coupled with energy-saving hydrogen production by Ir single-atom electrocatalyst. Appl. Catal. B-Environ., 2023, 336: 122937. |
[12] | PEI Z, ZHANG H, WU Z P, et al. Atomically dispersed Ni activates adjacent Ce sites for enhanced electrocatalytic oxygen evolution activity. Sci. Adv., 2023, 9(26): eadh1320. |
[13] | XING L, GAO H, HAI G, et al. Atomically dispersed ruthenium sites on whisker-like secondary microstructure of porous carbon host toward highly efficient hydrogen evolution. J. Mater. Chem. A, 2020, 8(6): 3203. |
[14] | TANG B, ZHOU Y, JI Q, et al. A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nat. Synth., 2024, 3: 878. |
[15] | YU Y, ZHU Z, HUANG H. Surface engineered single-atom systems for energy conversion. Adv. Mater., 2024, 36(16): 2311148. |
[16] | XU H, ZHAO Y, WANG Q, et al. Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev., 2022, 451: 214261. |
[17] |
HAN B, GUO Y, HUANG Y, et al. Strong metal-support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed., 2020, 59(29): 11824.
DOI PMID |
[18] | CAO F, NI W, ZHAO Q, et al. Precisely manipulating the local coordination of cobalt single-atom catalyst boosts selective hydrogenation of nitroarenes. Appl. Catal. B-Environ. Energy, 2024, 346: 123762. |
[19] | LIU X, ZHOU Y, LIN J, et al. Directional growth and density modulation of single-atom platinum for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed., 2024, 63(34): e202406650. |
[20] | LI H, PAN F, QIN C, et al. Porous organic polymers-based single-atom catalysts for sustainable energy-related electrocatalysis. Adv. Energy Mater., 2023, 13(28): 2301378. |
[21] | GLOAG L, SOMERVILLE S V, GOODING J J, et al. Co-catalytic metal-support interactions in single-atom electrocatalysts. Nat. Rev. Mater., 2024, 9(3): 173. |
[22] | YAN Q Q, WU D X, CHU S Q, et al. Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat. Commun., 2019, 10(1): 4977. |
[23] | ZHANG H, WU F, HUANG R, et al. Symmetry evolution induced 2D Pt single atom catalyst with high density for alkaline hydrogen oxidation. Adv. Mater., 2024, 36(31): 2404672. |
[24] | LI Z, WANG D, WU Y, et al. Recent advances in the precise control of isolated single-site catalysts by chemical methods. Nat. Sci. Rev., 2018, 5(5): 673. |
[25] | WANG X, KANG Z, WANG D, et al. Electronic structure regulation of the Fe-based single-atom catalysts for oxygen electrocatalysis. Nano Energy, 2024, 121: 109268. |
[26] |
LIN X, HU W, XU J, et al. Alleviating OH blockage on the catalyst surface by the puncture effect of single-atom sites to boost alkaline water electrolysis. J. Am. Chem. Soc., 2024, 146(7): 4883.
DOI PMID |
[27] | SAPTAL V B, RUTA V, BAJADA M A, et al. Single-atom catalysis in organic synthesis. Angew. Chem. Int. Ed., 2023, 62(34): e202219306. |
[28] | XI J, JUNG H S, XU Y, et al. Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv. Funct. Mater., 2021, 31(12): 2008318. |
[29] | WANG P, JIN Z L, CHEN N G, et al. Theoretical investigation of Mo doped α-MnO2 electrocatalytic oxygen evolution reaction. J. Inorg. Mater., 2022, 37(5): 541. |
[30] | SUN D, CHEN Y, YU X, et al. Engineering high-coordinated cerium single-atom sites on carbon nitride nanosheets for efficient photocatalytic amine oxidation and water splitting into hydrogen. Chem. Eng. J., 2023, 462: 142084. |
[31] | DING J, HUANG L, JI G, et al. Modification of catalytic properties of hollandite manganese oxide by Ag intercalation for oxidative acetalization of ethanol to diethoxyethane. ACS Catal., 2021, 11(9): 5347. |
[32] | YIN S, LI Y, YANG J, et al. Unveiling low temperature assembly of dense Fe-N4 active sites via hydrogenation in advanced oxygen reduction catalysts. Angew. Chem. Int. Ed., 2024, 63(23): e202404766. |
[33] | DU P, QI R, ZHANG Y, et al. Single-atom-driven dynamic carburization over Pd1-FeOx catalyst boosting CO2 conversion. Chem, 2022, 8(12): 3252. |
[34] | SUN L, CAO L, SU Y, et al. Ru1/FeOx single-atom catalyst with dual active sites for water gas shift reaction without methanation. Appl. Catal. B-Environ., 2022, 318: 121841. |
[35] | SWAIN S, ALTAEE A, SAXENA M, et al. A comprehensive study on heterogeneous single atom catalysis: current progress, and challenges. Coord. Chem. Rev., 2022, 470: 214710. |
[36] | GUO R, GUO C, BI Z, et al. The single atom Fe loaded catalytic membrane for effective peroxymonosulfate activation and pollution degradation. Appl. Catal. B-Environ. Energy, 2024, 356: 124243. |
[37] |
WEI J, TANG H, SHENG L, et al. Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction. Nat. Commun., 2024, 15(1): 559.
DOI PMID |
[38] | MEESE A F, NAPIER C, KIM D J, et al. Underpotential deposition of 3D transition metals: versatile electrosynthesis of single-atom catalysts on oxidized carbon supports. Adv. Mater., 2024, 36(19): 2311341. |
[39] | ZHAO X, HE D, XIA B Y, et al. Ambient electrosynthesis toward single-atom sites for electrocatalytic green hydrogen cycling. Adv. Mater., 2023, 35(14): 2210703. |
[40] | LV Y K, WANG K, SUN W Y, et al. A universal electrochemical synthetic strategy for the direct assembly of single-atom catalysts. Adv. Sci., 2023, 10(34): 2304656. |
[41] | YAO R, SUN K, ZHANG K, et al. Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges. Nat. Commun., 2024, 15(1): 2218. |
[42] | XU H, XIN G, HU W, et al. Single-atoms Ru/NiFe layered double hydroxide electrocatalyst: efficient for oxidation of selective oxidation of 5-hydroxymethylfurfural and oxygen evolution reaction. Appl. Catal. B-Environ., 2023, 339: 123157. |
[43] |
ZHANG Z, FENG C, LIU C, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun., 2020, 11(1): 1215.
DOI PMID |
[44] | QI K, CUI X, GU L, et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun., 2019, 10(1): 5231. |
[45] |
XUAN N, CHEN J, SHI J, et al. Single-atom electroplating on two dimensional materials. Chem. Mater., 2019, 31(2): 429.
DOI |
[46] |
JIANG K, LIU B, LUO M, et al. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun., 2019, 10(1): 1743.
DOI PMID |
[47] | ZHOU J, LIU Y, YANG D R, et al. Predicting the stability and loading for electrochemical preparation of single-atom catalysts. ACS Catal., 2023, 13(1): 79. |
[48] | XU J, LI R, XU C Q, et al. Underpotential-deposition synthesis and in-line electrochemical analysis of single-atom copper electrocatalysts. Appl. Catal. B-Environ., 2021, 289: 120028. |
[49] | SHANKAR A, MARIMUTHU S, MADURAIVEERAN G. High-valent iron single-atom catalysts for improved overall water splitting via a reduced energy barrier and stabilization of the active center. J. Mater. Chem. A, 2024, 12(1): 121. |
[50] | FONSECA J, LU J. Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catal., 2021, 11(12): 7018. |
[51] | CAO L, LU J. Atomic-scale engineering of metal-oxide interfaces for advanced catalysis using atomic layer deposition. Catal. Sci. Technol., 2020, 10(9): 2695. |
[52] | GONG T, QIN L, ZHANG W, et al. Activated carbon supported palladium nanoparticle catalysts synthesized by atomic layer deposition: genesis and evolution of nanoparticles and tuning the particle size. J. Phys. Chem. C, 2015, 119(21): 11544. |
[53] | SUN S, ZHANG G, GAUQUELIN N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep., 2013, 3(1): 1775. |
[54] |
CHENG N, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun., 2016, 7(1): 13638.
DOI PMID |
[55] | WANG X, JIN B, JIN Y, et al. Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions. ACS Appl. Nano Mater., 2020, 3(3): 2867. |
[56] | HE X, DING Y, HUANG Z, et al. Engineering a self-grown TiO2/Ti-MOF heterojunction with selectively anchored high- density Pt single-atomic cocatalysts for efficient visible-light- driven hydrogen evolution. Angew. Chem. Int. Ed., 2023, 62(25): e202217439. |
[57] | SONG Z, ZHU Y N, LIU H, et al. Engineering the low coordinated Pt single atom to achieve the superior electrocatalytic performance toward oxygen reduction. Small, 2020, 16(43): 2003096. |
[58] | SHI X, LIN Y, HUANG L, et al. Copper catalysts in semihydrogenation of acetylene: from single atoms to nanoparticles. ACS Catal., 2020, 10(5): 3495. |
[59] | JUSSILA T, PHILIP A, TRIPATHI T, et al. Atomic layer deposition of magnetic thin films: basic processes, engineering efforts, and road forward. Appl. Phys. Rev., 2023, 10(4): 041313. |
[60] | AFTABUZZAMAN M, AHMED M S, MATYJASZEWSKI K, et al. Nanocrystal co-existed highly dense atomically disperse Pt@3D-hierarchical porous carbon electrocatalysts for tri-iodide and oxygen reduction reactions. Chem. Eng. J., 2022, 446: 137249. |
[61] | JEONG H, KWON O, KIM B S, et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal., 2020, 3(4): 368. |
[62] | CHEN Z, LI X, ZHAO J, et al. Stabilizing Pt single atoms through Pt-Se electron bridges on vacancy-enriched nickel selenide for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed., 2023, 62(39): e202308686. |
[63] | XU R, XU B, YOU X, et al. Preparation of single-atom palladium catalysts with high photocatalytic hydrogen production performance by means of photochemical reactions conducted with frozen precursor solutions. J. Mater. Chem. A, 2023, 11(21): 11202. |
[64] | HUANG Y, XIONG J, ZOU Z, et al. Emerging strategies for the synthesis of correlated single atom catalysts. Adv. Mater., 2025, 37(2): 2312182. |
[65] | ZHOU S, SHANG L, ZHAO Y, et al. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater., 2019, 31(18): 1900509. |
[66] | LIU H, TIAN L, ZHANG Z, et al. Atomic-level asymmetric tuning of the Co1-N3P1 catalyst for highly efficient n-alkylation of amines with alcohols. J. Am. Chem. Soc., 2024, 146(29): 20518. |
[67] | XU H, XI S, LI J, et al. Chemical design and synthesis of superior single-atom electrocatalysts via in situ polymerization. J. Mater. Chem. A, 2020, 8(34): 17683. |
[68] | LI X, LIU J, WU J, et al. Constructing a highly active Pd atomically dispersed catalyst for cinnamaldehyde hydrogenation: synergistic catalysis between Pd-N3 single atoms and fully exposed Pd clusters. ACS Catal., 2024, 14(4): 2369. |
[69] | LI R, WANG D. Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv. Energy Mater., 2022, 12(9): 2103564. |
[70] | LI L, YUAN K, CHEN Y. Breaking the scaling relationship limit: from single-atom to dual-atom catalysts. Acc. Mater. Res., 2022, 3(6): 584. |
[71] | YU B, CHENG L, DAI S, et al. Silver and copper dual single atoms boosting direct oxidation of methane to methanol via synergistic catalysis. Adv. Sci., 2023, 10(26): 2302143. |
[72] | FU J, DONG J, SI R, et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS Catal., 2021, 11(4): 1952. |
[73] |
ZHANG D, WANG Z, LIU F, et al. Unraveling the pH-dependent oxygen reduction performance on single-atom catalysts: from single- to dual-sabatier optima. J. Am. Chem. Soc., 2024, 146(5): 3210.
DOI PMID |
[74] | ZHANG T, CHEN Z, WALSH A G, et al. Single-atom catalysts supported by crystalline porous materials: views from the inside. Adv. Mater., 2020, 32(44): 2002910. |
[75] |
FU W, WAN J, ZHANG H, et al. Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution. Nat. Commun., 2022, 13(1): 5496.
DOI PMID |
[76] |
LIU P, ZHAO Y, QIN R, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science, 2016, 352(6287): 797.
DOI PMID |
[77] | ZHUANG L, JIA Y, LIU H, et al. Defect-induced Pt-Co-Se coordinated sites with highly asymmetrical electronic distribution for boosting oxygen-involving electrocatalysis. Adv. Mater., 2019, 31(4): 1805581. |
[78] | REN G, ZHAO J, ZHAO Z, et al. Defects-induced single-atom anchoring on metal-organic frameworks for high-efficiency photocatalytic nitrogen reduction. Angew. Chem. Int. Ed., 2024, 63(2): e202314408. |
[79] | SHARMA P, SHARMA M, DEARG M, et al. Cd/Pt precursor solution for solar H2 production and in situ photochemical synthesis of Pt single-atom decorated CdS nanoparticles. Angew. Chem. Int. Ed., 2023, 62(20): e202301239. |
[80] | GAN T, LIU Y, HE Q, et al. Facile synthesis of kilogram-scale co-alloyed Pt single-atom catalysts via ball milling for hydrodeoxygenation of 5-hydroxymethylfurfural. ACS Sustainable Chem. Eng., 2020, 8(23): 8692. |
[81] | GAN T, HE Q, ZHANG H, et al. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J., 2020, 389: 124490. |
[82] | HE X, DENG Y, ZHANG Y, et al. Mechanochemical kilogram- scale synthesis of noble metal single-atom catalysts. Cell Rep. Phys. Sci., 2020, 1(1): 100004. |
[83] | LIU Z R, LIU W, HAO C, et al. Honeycomb-like carbon- supported Fe single atom catalyst: preparation and electrocatalytic performance in oxygen reduction reaction. J. Inorg. Mater., 2021, 36(9): 943. |
[84] | CHANG W, QI B, WANG R, et al. Atomically dispersed gold nanoclusters and single atoms coexisting chiral electrode for high-performance enantioselective electrosynthesis using H2O as hydrogen source. Adv. Funct. Mater., 2024, 34(28): 2315675. |
[85] |
ROBERTSON A W, MONTANARI B, HE K, et al. Dynamics of single Fe atoms in graphene vacancies. Nano Lett., 2013, 13(4): 1468.
DOI PMID |
[86] |
WANG H, WANG Q, CHENG Y, et al. Doping monolayer graphene with single atom substitutions. Nano Lett., 2012, 12(1): 141.
DOI PMID |
[87] | LI Y, KIDKHUNTHOD P, ZHOU Y, et al. Dense heterointerfaces and unsaturated coordination synergistically accelerate electrocatalysis in Pt/Pt5P2 porous nanocages. Adv. Funct. Mater., 2022, 32(41): 2205985. |
[88] | SONG J, ZHANG H, SUN R, et al. Local CO generator enabled by a CO-producing core for kinetically enhancing electrochemical CO2 reduction to multicarbon products. ACS Nano, 2024, 18(17): 11416. |
[89] | JONES J, XIONG H, DELARIVA A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 2016, 353(6295): 150. |
[90] | QU Y, LI Z, CHEN W, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal., 2018, 1(10): 781. |
[91] |
ZHOU H, ZHAO Y, GAN J, et al. Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. J. Am. Chem. Soc., 2020, 142(29): 12643.
DOI PMID |
[92] | WANG Z, WANG C, HU Y, et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res., 2021, 14(8): 2790. |
[93] | ZHU M, ZHAO C, LIU X, et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton- exchange membrane fuel cells. ACS Catal., 2021, 11(7): 3923. |
[94] | ZHANG H, TANG T, WANG H F, et al. Topological conversion of nickel foams to monolithic single-atom catalysts. Adv. Funct. Mater., 2024, 34(16): 2312939. |
[95] | ZHAO C, WANG Y, LI Z, et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction. Joule, 2019, 3(2): 584. |
[96] | PENG Y, CAO J, SHA Y, et al. Laser solid-phase synthesis of single-atom catalysts. Light Sci. Appl., 2021, 10(1): 168. |
[97] | KAUSHIK S, WU D, ZHANG Z, et al. Universal synthesis of single-atom catalysts by direct thermal decomposition of molten salts for boosting acidic water splitting. Adv. Mater., 2024, 36(27): 2401163. |
[98] | DU X, HUANG Y, PAN X, et al. Top-down fabrication of active interface between TiO2 and Pt nanoclusters. Part 1: redispersion process and mechanism. Chin. J. Catal., 2024, 58: 237. |
[99] | YE C, SHAN J, ZHU C, et al. Spatial structure engineering of interactive single platinum sites toward enhanced electrocatalytic hydrogen evolution. Adv. Energy Mater., 2023, 13(45): 2302190. |
[100] | YAO Y, HU S, CHEN W, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal., 2019, 2(4): 304. |
[101] | XUE Z, YAN M, YU X, et al. One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors. Chem, 2020, 6(12): 3364. |
[102] | YUE C, FENG C, SUN G, et al. Hierarchically stabilized Pt single-atom catalysts induced by an atomic substitution strategy for an efficient hydrogen evolution reaction. Energy Environ. Sci., 2024, 17(14): 5227. |
[103] | LI Q, ZHANG Q, XU W, et al. Sowing single atom seeds: a versatile strategy for hyper-low noble metal loading to boost hydrogen evolution reaction. Adv. Energy Mater., 2023, 13(10): 2203955. |
[104] |
LI J, LI K, LI Z, et al. Capture of single Ag atoms through high-temperature-induced crystal plane reconstruction. Nat. Commun., 2024, 15(1): 3874.
DOI PMID |
[105] | LU G, SCHWIDEROWSKI P, SHEN Z, et al. Macroporous carbon-supported Fe-based catalysts for the solvent-free oxidative coupling of benzylamine. Chem. Mater., 2024, 36(4): 2049. |
[106] | SONG J, QIAN S J, YANG W, et al. Nano-single-atom heterointerface engineering for pH-universal electrochemical nitrate reduction to ammonia. Adv. Funct. Mater., 2024, 34(49): 2409089. |
[107] |
ZHANG P, LI J, HUANG H, et al. Platinum single-atom nests boost solar-driven photocatalytic non-oxidative coupling of methane to ethane. J. Am. Chem. Soc., 2024, 146(34): 24150.
DOI PMID |
[108] | WAN J, ZHANG H, YANG J, et al. Synergy between Fe and Mo single atom catalysts for ammonia electrosynthesis. Appl. Catal. B-Environ. Energy, 2024, 347: 123816. |
[109] | WEN M, SUN N, JIAO L, et al. Microwave-assisted rapid synthesis of MOF-based single-atom Ni catalyst for CO2 electroreduction at ampere-level current. Angew. Chem. Int. Ed., 2024, 63(10): e202318338. |
[110] | CHANG J, JING W, YONG X, et al. Synthesis of ultrahigh- metal-density single-atom catalysts via metal sulfide-mediated atomic trapping. Nat. Synth., 2024, 3: 1427. |
[111] | CHEN C, SUN M, ZHANG F, et al. Adjacent Fe site boosts electrocatalytic oxygen evolution at Co site in single-atom- catalyst through a dual-metal-site design. Energy Environ. Sci., 2023, 16(4): 1685. |
[112] | ZHU M, ZHANG H, HU Y, et al. In situ nitrogen infiltration into an ordered Pt3Co alloy with sp-d hybridization to boost fuel cell performance. ACS Catal., 2024, 14(8): 5858. |
[113] | NAVEEN K, MAHVELATI-SHAMSABADI T, SHARMA P, et al. MOF-derived Co/Zn single-atom catalysts for reversible hydrogenation and dehydrogenation of quinoline hydrogen carrier. Appl. Catal. B-Environ., 2023, 328: 122482. |
[114] |
FEI H, DONG J, ARELLANO-JIMENEZ M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun., 2015, 6: 8668.
DOI PMID |
[115] | QU Y, WANG L, LI Z, et al. Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater., 2019, 31(44): 1904496. |
[116] |
ZHOU H, ZHAO Y, XU J, et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun., 2020, 11: 335.
DOI PMID |
[117] |
MIN Y, ZHOU X, CHEN J J, et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun., 2021, 12: 303.
DOI PMID |
[118] | DENG D, QIAN J, LIU X, et al. Non-covalent interaction of atomically dispersed Cu and Zn pair sites for efficient oxygen reduction reaction. Adv. Funct. Mater., 2022, 32(32): 2203471. |
[119] | BÜKER J, HUANG X, BITZER J, et al. Synthesis of Cu Single atoms supported on mesoporous graphitic carbon nitride and their application in liquid-phase aerobic oxidation of cyclohexene. ACS Catal., 2021, 11: 7863. |
[120] | XIA C, QIU Y, XIA Y, et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem., 2021, 13(9): 887. |
[121] |
QIAN S, XU F, FAN Y, et al. Tailoring coordination environments of single-atom electrocatalysts for hydrogen evolution by topological heteroatom transfer. Nat. Commun., 2024, 15(1): 2774.
DOI PMID |
[122] | YANG Y, XIAO Y, JIANG L, et al. Ultrahigh single Au atoms loaded porous aromatic frameworks for enhanced photocatalytic hydrogen evolution. Adv. Mater., 2024, 36(41): 2404791. |
[123] |
HAO C, LIU Z R, LIU W, et al. Research progress of carbon- supported metal single atom catalysts for oxygen reduction reaction. J. Inorg. Mater., 2021, 36(8): 820.
DOI |
[124] | JIN Y X, SONG E H, ZHU Y F. First-principles investigation of single 3d transition metals doping graphene vacancies for CO2 electroreduction. J. Inorg. Mater., 2024, 39(7): 845. |
[125] | WU J, YU L B, LIU S S, et al. NiN4Cr embedded graphene for electrochemical nitrogen fixation. J. Inorg. Mater., 2022, 37(10): 1141. |
[126] | DENG J, ZENG Y, ALMATRAFI E, et al. Advances of carbon nitride based atomically dispersed catalysts from single-atom to dual-atom in advanced oxidation process applications. Coord. Chem. Rev., 2024, 505: 215693. |
[127] | YANG X, XU L, LI Y. Do we achieve “1 + 1 > 2” in dual-atom or dual-single-atom catalysts? Coord. Chem. Rev., 2024, 516: 215961. |
[128] | CHENG C C, LIN T Y, TING Y C, et al. Metal-organic frameworks stabilized Mo and W binary single-atom catalysts as high performance bifunctional electrocatalysts for water electrolysis. Nano Energy, 2023, 112: 108450. |
[129] | HAN W, LING W, GAO P, et al. Engineering Pt single atom catalyst with abundant lattice oxygen by dual nanospace confinement strategy for the efficient catalytic elimination of VOCs. Appl. Catal. B-Environ. Energy, 2024, 345: 123687. |
[130] | CHEN W, YU M, LIU S, et al. Recent progress of Ru single-atom catalyst: synthesis, modification, and energetic applications. Adv. Funct. Mater., 2024, 34(22): 2313307. |
[131] | FENG W, LIU C, ZHANG G, et al. Tuning the local coordination environment of single-atom catalysts for enhanced electrocatalytic activity. EnergyChem, 2024, 6(2): 100119. |
[132] | LI M L, XIE Y M, SONG J, et al. Ammonia electrosynthesis on carbon-supported metal single-atom catalysts. Chin. J. Catal., 2024, 60: 42. |
[1] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[2] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[3] | 冯关正, 杨健, 周渡, 陈啟明, 许文涛, 周有福. 水热-碳热合成AlN纳米粉体的机理[J]. 无机材料学报, 2025, 40(1): 104-110. |
[4] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
[5] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[6] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[7] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[8] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[9] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[10] | 靳宇翔, 宋二红, 朱永福. 3d过渡金属单原子掺杂石墨烯缺陷电催化还原CO2的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 845-852. |
[11] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[12] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[13] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[14] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[15] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||