无机材料学报 ›› 2020, Vol. 35 ›› Issue (7): 735-747.DOI: 10.15541/jim20190388 CSTR: 32189.14.10.15541/jim20190388
所属专题: 封面文章; 能源材料论文精选(四):光催化与电催化(2020); MXene材料专辑(2020~2021); 【虚拟专辑】层状MAX,MXene及其他二维材料
• 综述 • 下一篇
李能,孔周舟,陈星竹,杨雨菲
收稿日期:
2019-07-25
修回日期:
2019-11-06
出版日期:
2020-07-20
网络出版日期:
2019-12-04
作者简介:
李 能(1981-), 男, 博士, 研究员. E-mail: lineng@whut.edu.cn基金资助:
LI Neng,KONG Zhouzhou,CHEN Xingzhu,YANG Yufei
Received:
2019-07-25
Revised:
2019-11-06
Published:
2020-07-20
Online:
2019-12-04
Supported by:
摘要:
二维材料以其丰富多样的性能受到广泛关注。该类材料具有极高的比表面积, 可以作为光催化剂和电催化剂, 在环境领域和可再生能源领域具有较大的开发和应用前景。本文综述了三种新型二维材料的结构性能, 即二维过渡金属碳/氮化物(MXenes)、类石墨相氮化碳(g-C3N4)以及黑磷(BP)在光催化或电催化领域的研究进展及改性方式; 对二维材料催化性能的改性进行了总结, 并展望了今后的研究方向。
中图分类号:
李能,孔周舟,陈星竹,杨雨菲. 新型二维材料光催化与电催化研究进展[J]. 无机材料学报, 2020, 35(7): 735-747.
LI Neng,KONG Zhouzhou,CHEN Xingzhu,YANG Yufei. Research Progress of Novel Two-dimensional Materials in Photocatalysis and Electrocatalysis[J]. Journal of Inorganic Materials, 2020, 35(7): 735-747.
图3 (a) N掺杂石墨烯/V2C MXene复合结构表面的ORR示意图[39], (b) Mo3C2 MXene表面的CO2RR示意图[41], (c) V3C2 MXene表面的N2RR示意图[42] (1 Å=0.1 nm)
Fig. 3 (a) ORR schematic diagram of the surface of N-doped graphene/V2C MXene composite structure[39], (b) schematic diagram of CO2RR of Mo3C2 MXene surface[41], (c) schematic diagram of N2RR of V3C2 MXene surface[42] (1 Å=0.1 nm)
图4 (a)过渡金属原子负载的V2CO2 MXene表面的氢原子吸附自由能[46]和(b) M3CNO2型MXene的HER活性火山图[35]
Fig. 4 (a) Hydrogen adsorption free energy of V2CO2 MXene surface supported by transition metal atom[46] and (b) HER active volcano map of M3CNO2 type MXene[35]
图5 g-C3N4的催化性能改性方法
Fig. 5 Catalytic performance modification methods of g-C3N4 (a) Different precursors and synthetic parameters affect the specific surface area and band gap of g-C3N4[6], (b) preparation of two-dimensional g-C3N4 nanosheets by nanocrystallization[60], and (c) effect of N doping on the photocatalytic hydrogen separation performance of g-C3N4[61]
图6 黑磷块材到单层黑磷的(a)结构侧视图及其对应的(b)能带结构图[80]
Fig. 6 Side view of (a) structure of black phosphorus block to monolayer black phosphorus and its corresponding (b) band structure diagram[80]
图7 二维材料催化性能的改性
Fig. 7 Modification of catalytic properties of two-dimensional materials (a) Boundary state regulation; (b) Functional group regulation; (c) Defect state regulation; (d) Single atomic immobilization; (e) Confinement effect; (f) Heterojunction
图8 (a)Ⅰ型、(b)Ⅱ型、(c)Ⅲ型和(d)Z型异质结光生电子传输示意图[115]
Fig. 8 Schematic diagram of photogenerated electron transport of (a) type I, (b) type II, (c) type III and (d) Z type heterojunction[115]
[1] |
GEIM A K, NOVOSELOV K S. The rise of graphene. Nature Mater., 2007,6:183-191.
DOI URL |
[2] |
傅强, 包信和. 石墨烯的化学研究进展. 科学通报, 2009,54(18):2657-2666.
DOI URL |
[3] |
ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chemical Reviews, 2016,116(12):7159-7329.
DOI URL PMID |
[4] |
THOMAS A, FISCHER A, GOETTMANN F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008,18(41):4893.
DOI URL |
[5] |
张金水, 王博, 王心晨. 石墨相氮化碳的化学合成及应用. 物理化学学报, 2013,29(9):1865-1876.
DOI URL |
[6] |
LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013,341(6153):1502-1505.
DOI URL |
[7] |
NAGUIB M, COME J, DYATKIN B, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 2012,16(1):61-64.
DOI URL |
[8] |
PENG J, CHEN X, ONG W J, et al. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem., 2019,5(1):18-50.
DOI URL |
[9] |
CHHOWALLA M, LIU Z, ZHANG H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chemical Society Reviews, 2015,44(9):2584-2586.
DOI URL PMID |
[10] |
CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013,5:263.
DOI URL |
[11] |
XU M, LIANG T, SHI M, et al. Graphene-like two-dimensional materials. Chemical Reviews, 2013,113(5):3766-3798.
DOI URL PMID |
[12] |
CHEN P, LI N, CHEN X, et al. The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Materials, 2017,5(1):014002.
DOI URL |
[13] |
袁振洲, 刘丹敏, 田楠, 等. 二维黑磷的结构、制备和性能. 化学学报, 2016,74(6):488-497.
DOI URL |
[14] |
LIN Y, WILLIAMS T V, CONNELL J W. Soluble, exfoliated hexagonal boron nitride nanosheets. The Journal of Physical Chemistry Letters, 2010,1(1):277-283.
DOI URL |
[15] |
SONG L, CI L, LU H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Letters, 2010,10(8):3209-3215.
DOI URL PMID |
[16] |
GONG M, LI Y, WANG H, et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 2013,135(23):8452-8455.
DOI URL PMID |
[17] |
WANG Q, O’HARE D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012,112(7):4124-4155.
DOI URL PMID |
[18] |
OSADA M, SASAKI T. Exfoliated oxide nanosheets: new solution to nanoelectronics. Journal of Materials Chemistry, 2009,19(17):2503-2511.
DOI URL |
[19] |
PENG Y, LI Y, BAN Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014,346(6215):1356.
DOI URL PMID |
[20] |
RODENAS T, LUZ I, PRIETO G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2014,14:48.
DOI URL PMID |
[21] |
PENG Y, HUANG Y, ZHU Y, et al. Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. Journal of the American Chemical Society, 2017,139(25):8698-8704.
DOI URL PMID |
[22] |
KISSEL P, MURRAY D J, WULFTANGE W J, et al. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nature Chemistry, 2014,6:774.
DOI URL |
[23] |
TAO L, CINQUANTA E, CHIAPPE D, et al. Silicene field-effect transistors operating at room temperature. Nature Nanotechnology, 2015,10(3):227-231.
DOI URL PMID |
[24] |
ZHANG S, YAN Z, LI Y, et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angewandte Chemie International Edition, 2015,54(10):3112-3115.
DOI URL PMID |
[25] |
ZHANG T, DAR M I, LI G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Science Advances, 2017,3(9):e1700841.
DOI URL PMID |
[26] |
TSAI H, NIE W, BLANCON J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016,536(7616):312-316.
DOI URL PMID |
[27] |
TAN C, CAO X, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 2017,117(9):6225-6331.
DOI URL PMID |
[28] |
ASHTON M, PAUL J, SINNOTT S B, et al. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Physical Review Letters, 2017,118(10):106101.
DOI URL PMID |
[29] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011,23(37):4248-4253.
DOI URL PMID |
[30] |
BARSOUM M W. The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Progress in Solid State Chemistry, 2000,28(1):201-281.
DOI URL |
[31] |
HERN NDEZ S, MISKA P, GR N M, et al. Tailoring the surface density of silicon nanocrystals embedded in SiOx single layers. Journal of Applied Physics, 2013,114(23):233101.
DOI URL |
[32] |
SUN Z, LI S, AHUJA R, et al. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta). Solid State Communications, 2004,129(9):589-592.
DOI URL |
[33] |
GUO Z, ZHU L, ZHOU J, et al. Microscopic origin of MXenes derived from layered MAX phases. RSC Advances, 2015,5(32):25403-25408.
DOI URL |
[34] | 李正阳, 周爱国, 王李波, 等. 二维晶体MXene的制备与性能研究进展, 硅酸盐通报, 2013,32(8):1562-1566. |
[35] |
NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides. ACS Nano, 2012,6(2):1322-1331.
DOI URL PMID |
[36] |
MA T Y, CAO J L, JARONIEC M, et al. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angewandte Chemie International Edition, 2016,55(3):1138-1142.
DOI URL PMID |
[37] |
ZHAO L, DONG B, LI S, et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano, 2017,11(6):5800-5807.
DOI URL PMID |
[38] |
YU M, ZHOU S, WANG Z, et al. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy, 2018,44:181-190.
DOI URL |
[39] |
ZHOU S, YANG X, PEI W, et al. Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale, 2018,10(23):10876-10883.
DOI URL PMID |
[40] |
ZHANG X, LEI J, WU D, et al. A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. Journal of Materials Chemistry A, 2016,4(13):4871-4876.
DOI URL |
[41] |
LI N, CHEN X, ONG W J, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano, 2017,11(11):10825-10833.
DOI URL PMID |
[42] | AZOFRA L M, LI N, MACFARLANE D R, et al. Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy & Environmental Science, 2016,9(8):2545-2549. |
[43] |
ZHAO D, CHEN Z, YANG W, et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. Journal of the American Chemical Society, 2019,141(9):4086-4093.
DOI URL PMID |
[44] |
LING C, SHI L, OUYANG Y, et al. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chemistry of Materials, 2016,28(24):9026-9032.
DOI URL |
[45] |
GUO Z, ZHOU J, ZHU L, et al. MXene: a promising photocatalyst for water splitting. Journal of Materials Chemistry A, 2016,4(29):11446-11452.
DOI URL |
[46] |
LING C, SHI L, OUYANG Y, et al. Transition metal-promoted V2CO2(MXenes): a new and highly active catalyst for hydrogen evolution reaction. Advanced Science, 2016,3(11):1600180.
DOI URL PMID |
[47] |
LI P, ZHU J, HANDOKO A D, et al. High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. Journal of Materials Chemistry A, 2018,6(10):4271-4278.
DOI URL |
[48] |
WANG H, PENG R, HOOD Z D, et al. Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem, 2016,9(12):1490-1497.
DOI URL PMID |
[49] |
RAN J, GAO G, LI F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017,8:13907.
DOI URL PMID |
[50] |
SHAO M, SHAO Y, CHAI J, et al. Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2017,5(32):16748-16756.
DOI URL |
[51] |
SUN Y, JIN D, SUN Y, et al. g-C3N4/Ti3C2Tx(MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018,6(19):9124-9131.
DOI URL |
[52] |
PANDEY M, THYGESEN K S. Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: a computational screening study. The Journal of Physical Chemistry C, 2017,121(25):13593-13598.
DOI URL |
[53] |
SEH Z W, FREDRICKSON K D, ANASORI B, et al. Two-dimensional Molybdenum Carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 2016,1(3):589-594.
DOI URL |
[54] |
HUANG B, ZHOU N, CHEN X, et al. Insights into the electrocatalytic hydrogen evolution reaction mechanism on two-dimensional transition-metal carbonitrides (MXene). Chemistry, 2018,24(69):18479-18486.
DOI URL PMID |
[55] |
JIANG Y, SUN T, XIE X, et al. Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem., 2019,12(7):1368-1373.
DOI URL PMID |
[56] |
TETER D M, HEMLEY R J. Low-compressibility carbon nitrides. Science, 1996,271(5245):53.
DOI URL |
[57] |
KROKE E, SCHWARZ M, HORATH-BORDON E, et al. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New Journal of Chemistry, 2002,26(5):508-512.
DOI URL |
[58] |
WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009,8(1):76-80.
DOI URL PMID |
[59] |
CAO S, YU J. g-C3N4-based photocatalysts for hydrogen generation. The Journal of Physical Chemistry Letters, 2014,5(12):2101-2107.
DOI URL PMID |
[60] | ZHANG J, CHEN Y, WANG X. Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy & Environmental Science, 2015,8(11):3092-3108. |
[61] |
HAO Q, SONG Y, JI H, et al. Surface N modified 2D g-C3N4 nanosheets derived from DMF for photocatalytic H2 evolution. Applied Surface Science, 2018,459:845-852.
DOI URL |
[62] |
CUI Y, ZHANG J, ZHANG G, et al. Synthesis of bulk and nanoporous carbon nitride polymers from ammonium thiocyanate for photocatalytic hydrogen evolution. Journal of Materials Chemistry, 2011,21(34):13032-13039.
DOI URL |
[63] |
BELLARDITA M, GARC A L, PEZ E I, et al. Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Applied Catalysis B: Environmental, 2018,220:222-233.
DOI URL |
[64] |
JOURSHABANI M, SHARIATINIA Z, BADIEI A. Synthesis and characterization of novel Sm2O3/S-doped g-C3N4 nanocomposites with enhanced photocatalytic activities under visible light irradiation. Applied Surface Science, 2018,427:375-387.
DOI URL |
[65] |
FU J, YU J, JIANG C, et al. g-C3N4-based heterostructured photocatalysts. Advanced Energy Materials, 2018,8:1701503.
DOI URL |
[66] |
BAI Y, WANG P Q, LIU J Y, et al. Enhanced photocatalytic performance of direct Z-scheme BiOCl-g-C3N4 photocatalysts. RSC Advances, 2014,4(37):19456-19461.
DOI URL |
[67] |
DI J, XIA J, YIN S, et al. Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. Journal of Materials Chemistry A, 2014,2(15):5340-5351.
DOI URL |
[68] |
LIU C, HUANG H, DU X, et al. In situ co-crystallization for fabrication of g-C3N4/Bi5O7I heterojunction for enhanced visible-light photocatalysis. The Journal of Physical Chemistry C, 2015,119(30):17156-17165.
DOI URL |
[69] |
LI G, WANG B, ZHANG J, et al. Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline. Applied Surface Science, 2019,478:1056-1064.
DOI URL |
[70] |
LIU Y, ZHANG H, KE J, et al. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Applied Catalysis B: Environmental, 2018,228:64-74.
DOI URL |
[71] |
HONG Y, JIANG Y, LI C, et al. In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants. Applied Catalysis B: Environmental, 2016,180:663-673.
DOI URL |
[72] |
HUANG Z A, SUN Q, LYU K, et al. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2 Applied Catalysis B: Environmental, 2015,164:420-427.
DOI URL |
[73] |
WANG J, XIA Y, ZHAO H, et al. Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution. Applied Catalysis B: Environmental, 2017,206:406-416.
DOI URL |
[74] |
YU W, CHEN J, SHANG T, et al. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Applied Catalysis B: Environmental, 2017,219:693-704.
DOI URL |
[75] |
TIAN J, NING R, LIU Q, et al. Three-dimensional porous supramolecular architecture from ultrathin g-C3N4 nanosheets and reduced graphene oxide: solution self-assembly construction and application as a highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Applied Materials & Interfaces, 2014,6(2):1011-1017.
DOI URL PMID |
[76] |
WANG C, ZHAO H, WANG J, et al. Atomic Fe hetero-layered coordination between g-C3N4 and graphene nanomeshes enhances the ORR electrocatalytic performance of zinc-air batteries. Journal of Materials Chemistry A, 2019,7(4):1451-1458.
DOI URL |
[77] |
XU L, HUANG W Q, WANG L L, et al. Insights into enhanced visible-light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: the role of oxygen. Chemistry of Materials, 2015,27(5):1612-1621.
DOI URL |
[78] | LI L, YU Y. Black phosphorus field-effect transistors. 2014,9(5):372-377. |
[79] |
SA B, LI Y L, QI J, et al. Strain engineering for phosphorene: the potential application as a photocatalyst. The Journal of Physical Chemistry C, 2014,118(46):26560-26568.
DOI URL |
[80] |
RAN J, ZHU B, QIAO S Z. Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production. Angewandte Chemie International Edition, 2017,56(35):10373-10377.
DOI URL PMID |
[81] |
LIU H, DU Y, DENG Y, et al. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chemical Society Reviews, 2015,44(9):2732-2743.
DOI URL PMID |
[82] |
LIU H, HU K, YAN D, et al. Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Advanced Materials, 2018,30(32):e1800295.
DOI URL PMID |
[83] |
JIANG Q, XU L, CHEN N, et al. Facile synthesis of black phosphorus: an efficient electrocatalyst for the oxygen evolving reaction. Angewandte Chemie International Edition, 2016,55(44):13849-13853.
DOI URL PMID |
[84] |
ZHU M, OSAKADA Y, KIM S, et al. Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2017,217:285-292.
DOI URL |
[85] |
DING K, WEN L, HUANG S, et al. Electronic properties of red and black phosphorous and their potential application as photocatalysts. RSC Advances, 2016,6(84):80872-80884.
DOI URL |
[86] |
SHEN Z, SUN S, WANG W, et al. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2015,3(7):3285-3288.
DOI URL |
[87] |
NIU X, LI Y, SHU H, et al. Anomalous size dependence of optical properties in black phosphorus quantum dots. The Journal of Physical Chemistry Letters, 2016,7(3):370-375.
DOI URL PMID |
[88] |
ZHANG X, XIE H, LIU Z, et al. Black phosphorus quantum dots. Angewandte Chemie International Edition, 2015,54(12):3653-3657.
DOI URL PMID |
[89] |
SUN Z, XIE H, TANG S, et al. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015,54(39):11526-11530.
DOI URL PMID |
[90] |
XU Y, WANG Z, GUO Z, et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Advanced Optical Materials, 2016,4(8):1223-1229.
DOI URL |
[91] |
GAO J, ZHANG G, ZHANG Y W. The critical role of substrate in stabilizing phosphorene nanoflake: a theoretical exploration. J. Am. Chem. Soc., 2016,138(14):4763-4771.
DOI URL PMID |
[92] |
ZHU M, KIM S, MAO L, et al. Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride. J. Am. Chem. Soc. 2017,139(37):13234-13242.
DOI URL PMID |
[93] |
DONG J, SHI Y, HUANG C, et al. A new and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production. Applied Catalysis B: Environmental, 2019,243:27-35.
DOI URL |
[94] |
RAN J, GUO W, WANG H, et al. Metal-free 2D/2D phosphorene/g-C3N4 van der waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Advanced Materials, 2018,30(25):e1800128.
DOI URL PMID |
[95] |
KONG L, JI Y, DANG Z, et al. g-C3N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light. Advanced Functional Materials, 2018,28(22):1800668.
DOI URL |
[96] |
LEI W, MI Y, FENG R, et al. Hybrid 0D-2D black phosphorus quantum dots-graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy, 2018,50:552-561.
DOI URL |
[97] |
HAN C, LI J, MA Z, et al. Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. Science China Materials, 2018,61(9):1159-1166.
DOI URL |
[98] |
TSAI C, ABILD-PEDERSEN F, N RSKOV J K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Letters, 2014,14(3):1381-1387.
DOI URL |
[99] |
DENG D, YU L, PAN X, et al. Size effect of graphene on electrocatalytic activation of oxygen. Chemical Communications, 2011,47(36):10016-10018.
DOI URL |
[100] |
DREYER D R, JIA H P, BIELAWSKI C W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angewandte Chemie, 2010,122(38):6965-6968.
DOI URL |
[101] |
GAO Y, MA D, WANG C, et al. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications, 2011,47(8):2432-2434.
DOI URL |
[102] |
GAO G, O’MULLANE A P, DU A. 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catalysis, 2017,7(1):494-500.
DOI URL |
[103] |
JIAO X, CHEN Z, LI X, et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. Journal of the American Chemical Society, 2017,139(22):7586-7594.
DOI URL PMID |
[104] |
DENG D, NOVOSELOV K S, FU Q, et al. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016,11:218.
DOI URL PMID |
[105] |
SHENG Z H, GAO H L, BAO W J, et al. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. Journal of Materials Chemistry, 2012,22(2):390-395.
DOI URL |
[106] |
XU H, CHENG D, CAO D, et al. A universal principle for a rational design of single-atom electrocatalysts. Nature Catalysis, 2018,1(5):339-348.
DOI URL |
[107] |
ZHAO J, CHEN Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. Journal of the American Chemical Society, 2017,139(36):12480-12487.
DOI URL PMID |
[108] |
CHEN X, ZHAO X, KONG Z, et al. Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride. Journal of Materials Chemistry A, 2018,6(44):21941-21948.
DOI URL |
[109] |
WANG Y, ZHANG W, DENG D, et al. Two-dimensional materials confining single atoms for catalysis. Chinese Journal of Catalysis, 2017,38:1443-1453.
DOI URL |
[110] |
HUANG L L, ZOU Y Q, CHEN D W, et al. Electronic structure regulation on layered double hydroxides for oxygen evolution reaction. Chinese Journal of Catalysis, 2019,40(12):1822-1840.
DOI URL |
[111] | CUI X, XIAO J, WU Y, et al. A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells. Angewandte Chemie International Edition, 2016,128(23):6820-6824. |
[112] |
ZHANG Y, WENG X, LI H, et al. Hexagonal boron nitride cover on Pt(111): a new route to tune molecule-metal interaction and metal-catalyzed reactions. Nano Letters, 2015,15(5):3616-3623.
DOI URL PMID |
[113] |
WANG H, CHEN S, YONG X, et al. Giant electron-hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc., 2017,139(13):4737-4742.
DOI URL PMID |
[114] |
FU Q, YANG F, BAO X. Interface-confined oxide nanostructures for catalytic oxidation reactions. Accounts of Chemical Research, 2013,46(8):1692-1701.
DOI URL PMID |
[115] |
LOW J, YU J, JARONIEC M, et al. Heterojunction photocatalysts. Advanced Materials, 2017,29(20):1601694.
DOI URL |
[116] |
LIAO J, SA B, ZHOU J, et al. Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures. The Journal of Physical Chemistry C, 2014,118(31):17594-17599.
DOI URL |
[117] |
GUO Z, MIAO N, ZHOU J, et al. Strain-mediated type-I/type-II transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. Journal of Materials Chemistry C, 2017,5(4):978-984.
DOI URL |
[118] |
ZHANG X, ZHANG Z, WU D, et al. Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts. Small Methods, 2018,2(5):1700359.
DOI URL |
[119] |
KONG Z, CHEN X, ONG W J, et al. Atomic-level insight into the mechanism of 0D/2D black phosphorus quantum dot/graphitic carbon nitride (BPQD/GCN) metal-free heterojunction for photocatalysis. Applied Surface Science, 2019,463:1148-1153.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 曹青青, 陈翔宇, 吴健豪, 王筱卓, 王乙炫, 王禹涵, 李春颜, 茹菲, 李兰, 陈智. SiO2增强自敏性氮化碳微球可见光降解盐酸四环素的研究[J]. 无机材料学报, 2024, 39(7): 787-792. |
[8] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[9] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[10] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[11] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[12] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[13] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[14] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[15] | 李红兰, 张俊苗, 宋二红, 杨兴林. Mo/S共掺杂的石墨烯用于合成氨: 密度泛函理论研究[J]. 无机材料学报, 2024, 39(5): 561-568. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||