| [1] |
SPAETH M L, MANES K R, KALANTAR D H, et al. Description of the NIF laser. Fusion Science and Technology, 2016, 69(1): 25.
DOI
URL
|
| [2] |
BAYRAMIAN A, ACEVES S, ANKLAM T, et al. Compact, efficient laser systems required for laser inertial fusion energy. Fusion Science and Technology, 2011, 60(1): 28.
DOI
URL
|
| [3] |
DANSON C N, HAEFNER C, BROMAGE J, et al. Petawatt and exawatt class lasers worldwide. High Power Laser Science and Engineering, 2019, 7(3): 172.
|
| [4] |
ZHU Z D, LV S W, ZHANG H Y, et al. Highly efficient actively Q-switched Nd:YAG laser. Optics Express, 2021, 29(20): 32325.
DOI
PMID
|
| [5] |
BANERJEES, ERTEL K, MASON P D, et al. DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser. Optics Express, 2015, 23(15): 19542.
DOI
PMID
|
| [6] |
BROWND C, MCMILLEN C D, MOORE C, et al. Spectral properties of hydrothermally-grown Nd:LuAG, Yb:LuAG, and Yb:Lu2O3 laser materials. Journal of Luminescence, 2014, 148: 26.
DOI
URL
|
| [7] |
GONCALVES T, ALBACH D, VINCENT B, et al. 14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain. Optics Express, 2013, 21(1): 855.
DOI
URL
|
| [8] |
冯亚刚, 田丰, 刘子玉, 等. 层状复合结构YAG/Yb:YAG透明陶瓷的制备与性能研究. 人工晶体学报, 2024, 53(11): 1901.
|
| [9] |
YAGI H, BISSON J F, UEDA K, et al. Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers. Journal of Luminescence, 2006, 121(1): 88.
DOI
URL
|
| [10] |
HAEFNER C L, BAYRAMIAN A, BETTS S, et al. High average power diode pumped petawatt laser systems a new generation of lasers enabling precision science and commercial applications. Proceedings of SPIE, 2017, 10241: 1024102.
|
| [11] |
LEBEGUE P, DE SOUSA J, RAPENOU C. Coherent combining of large-aperture high-energy Nd:glass laser amplifiers. High Power Laser Science and Engineering, 2025, 13: 4.
|
| [12] |
RONG X F, YANG Y M, PENG S Z, et al. Sub-nanosecond diode-pumped passively Q-switched Nd:LuAG ceramic microchip lasers. Optics & Laser Technology, 2023, 158:108901.
|
| [13] |
FU Y L, LI J, LIU Y, et al. Fabrication, microstructure and laser performance of Nd3+-doped Lu3Al5O12 transparent ceramics. Journal of the European Ceramic Society, 2016, 36(3): 655.
DOI
URL
|
| [14] |
LIU T H, FENG T, SUI Z, et al. 50 mm-aperture Nd:LuAG ceramic nanosecond laser amplifier producing 10 J at 10 Hz. Optics Express, 2019, 27(11): 15595.
DOI
PMID
|
| [15] |
ZHANG W S, LI L J, LIANG H. Efficient acousto-optically Q-switched Tm:LuAG laser end-pumped by a laser diode at 1.7 μm. Applied Physics B-Lasers and Optics, 2025, 131(3): 65.
|
| [16] |
IKESUEA, FURUSATO I, KAMATA K, et al. Fabrication of polycrystal line, transparent YAG ceramics by a solid-state reaction method. Journal of the American Ceramic Society, 1995, 78(1): 225.
DOI
URL
|
| [17] |
TIAN F, IKESUEA , LI J. Progress and perspectives on composite laser ceramics: a review. Journal of the European Ceramic Society, 2022, 42(5): 1833.
DOI
URL
|
| [18] |
LIU Z Y, FENG Y G, CHEN H H, et al. Microstructure and properties characterization of Yb:Lu2O3 transparent ceramics from co-precipitated nano-powders. International Journal of Applied Ceramic Technology, 2023, 20(6): 3365.
DOI
URL
|
| [19] |
LI X Y, ZHANG L X, HU D J, et al. Fabrication and characterizations of Tb3Al5O12-based magneto-optical ceramics. International Journal of Applied Ceramic Technology, 2023, 20(1): 493.
DOI
URL
|
| [20] |
LI X, HU C, LIU Q, et al. Fluoride transparent ceramics for solid-state lasers: a review. Journal of Advanced Ceramics, 2024, 13(12): 1891.
DOI
URL
|
| [21] |
YE J H, ZHOU Z Z, HU C, et al. Yb:Sc2O3 Transparent ceramics fabricated from co-precipitated nano-powders: microstructure and optical property. Journal of Inorganic Materials, 2025, 40(2): 215.
DOI
URL
|
| [22] |
HUSS R, WILHELM R, KOLLECK C, et al. Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding. Optics Express, 2010, 18(12): 13094.
DOI
PMID
|
| [23] |
TIMOSHENKO A D, MATVIENKO O O, DOROSHENKO A G, et al. Highly-doped YAG:Sm3+ transparent ceramics: effect of Sm3+ ions concentration. Ceramics International, 2023, 49(5): 7524.
DOI
URL
|
| [24] |
WANG X, YU H, LI P, et al. Femtosecond laser-based processing methods and their applications in optical device manufacturing: a review. Optics & Laser Technology, 2021, 135: 106687.
|
| [25] |
JI S H, HUANG W F, FENG T, et al. Modeling and measurement of thermal effect in a flashlamp-pumped direct-liquid-cooled split-disk Nd:LuAG ceramic laser amplifier. Nature Photonics, 2021, 8(4): 97.
|
| [26] |
HUß R, WILHELM R, NEUMANN J, et al. Passively Q-switched core-doped ceramic Nd:YAG laser with Sm:YAG cladding. Lasers and Electro-Optics, 2007, 5:1303.
|
| [27] |
YAGI H, YANAGITANI T. Recent progress in transparent polycrystalline ceramics for optical applications. Laser & Photonics Reviews, 2011, 39(5): 300.
|
| [28] |
MA J, LU T T, ZHU X L, et al. 1.57 MW peak power pulses generated by a diode-pumped Q-switched Nd:LuAG ceramic laser. Chinese Optics Letters, 2017, 15(12): 121402.
DOI
URL
|
| [29] |
KONG W, TSUNEKANE M, TAIRA T, et al. Diode edge-pumped passively Q-switched microchip laser. Optical Engineering, 2015, 54(9): 090501.
DOI
URL
|
| [30] |
STEVENSON A J, LI X, MARTINEZ M A, et al. Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics. Journal of the American Ceramic Society, 2011, 94(5): 1380.
DOI
URL
|
| [31] |
JING Y Q, TIAN F, GUO L H, et al. Effect of TEOS content on microstructure evolution and optical properties of Sm:YAG transparent ceramics. Optical Materials, 2024, 147: 114681.
DOI
URL
|
| [32] |
LIN Z, HUANG X, LAN J, et al. Efficient and compact diode-pumped Nd:YAG lasers at 1073 and 1078 nm. IEEE Photonic, 2016, 8(2): 1500808.
|