无机材料学报 ›› 2025, Vol. 40 ›› Issue (12): 1414-1424.DOI: 10.15541/jim20250042
郭佳芯1(
), 陈美娟1, 吴浩1, 郑潇然1, 闵楠1, 田辉1(
), 齐东丽1, 李全军2, 都时禹3,4, 沈龙海1(
)
收稿日期:2025-02-04
修回日期:2025-04-10
出版日期:2025-12-20
网络出版日期:2025-04-15
通讯作者:
沈龙海, 教授. E-mail: shenlonghai@sylu.edu.cn;作者简介:郭佳芯(2001-), 女, 硕士研究生. E-mail: 463256229@qq.com
基金资助:
GUO Jiaxin1(
), CHEN Meijuan1, WU Hao1, ZHENG Xiaoran1, MIN Nan1, TIAN Hui1(
), QI Dongli1, LI Quanjun2, DU Shiyu3,4, SHEN Longhai1(
)
Received:2025-02-04
Revised:2025-04-10
Published:2025-12-20
Online:2025-04-15
Contact:
SHEN Longhai, professor. E-mail: shenlonghai@sylu.edu.cn;About author:GUO Jiaxin (2001-), female, Master candidate. E-mail: 463256229@qq.com
Supported by:摘要:
新型In基MAX相Zr3InC2因其优异的物理性能而受到广泛关注, 但其在高压下的研究仍较为有限。基于密度泛函理论(DFT)的第一性原理, 本工作系统研究了压力对新型MAX相Zr3InC2的晶体结构、力学性质、电子结构和热力学性质的影响。通过与Zr3AlC2进行对比, 揭示了A位元素由Al替换为In对MAX相材料的晶体结构、物理性质及两者在高压环境下响应的影响。计算得到的Zr3InC2和Zr3AlC2晶格参数与之前的实验报道相一致。晶格参数随压力的变化结果表明, Zr3InC2和Zr3AlC2存在明显的各向异性压缩, 即沿c轴方向的压缩率显著高于沿a轴方向。弹性常数和声子色散曲线的结果表明, Zr3InC2在0~50 GPa范围内保持力学稳定和动力学稳定。此外, 不同压力下的泊松比结果表明, Zr3InC2在常压下为脆性, 随着压力的增加, 其脆性逐渐减弱, 40 GPa时首次呈现韧性, 其中泊松比和柯西压力在50 GPa下存在差异, 表明Zr3InC2在高压下可能处于脆韧转变的临界区。经对比发现, Zr3InC2的力学性质比Zr3AlC2在高压下的响应更为敏感。电子结构的计算结果显示Zr3InC2具有金属性。热力学分析显示, Zr3InC2在常压下具有相对较低的热膨胀系数, 随着压力的增加, Zr3InC2的德拜温度和最小导热系数显著上升, 这表明压力能有效调节Zr3InC2的热力学性能, 为其在高温领域中的潜在应用提供了理论支持。
中图分类号:
郭佳芯, 陈美娟, 吴浩, 郑潇然, 闵楠, 田辉, 齐东丽, 李全军, 都时禹, 沈龙海. 高压下新型MAX相Zr3InC2的第一性原理研究[J]. 无机材料学报, 2025, 40(12): 1414-1424.
GUO Jiaxin, CHEN Meijuan, WU Hao, ZHENG Xiaoran, MIN Nan, TIAN Hui, QI Dongli, LI Quanjun, DU Shiyu, SHEN Longhai. First-principles Study of Novel MAX Phase Zr3InC2 under High Pressure[J]. Journal of Inorganic Materials, 2025, 40(12): 1414-1424.
| MAX | a/Å | c/Å | V/Å3 | c/a | Ref. |
|---|---|---|---|---|---|
| Zr3InC2 | 3.332 | 20.177 | 200.776 | 6.055 | This work |
| 3.351 | 20.251 | 194.004 | 6.042 | [18] | |
| Zr3AlC2 | 3.337 | 19.940 | 192.362 | 5.975 | This work |
| 3.328 | 20.011 | 192.01 | 6.011 | [41] |
表1 0 GPa压力下Zr3InC2和Zr3AlC2的结构参数[18,41]
Table 1 Structural parameters of Zr3InC2 and Zr3AlC2 at 0 GPa pressure[18,41]
| MAX | a/Å | c/Å | V/Å3 | c/a | Ref. |
|---|---|---|---|---|---|
| Zr3InC2 | 3.332 | 20.177 | 200.776 | 6.055 | This work |
| 3.351 | 20.251 | 194.004 | 6.042 | [18] | |
| Zr3AlC2 | 3.337 | 19.940 | 192.362 | 5.975 | This work |
| 3.328 | 20.011 | 192.01 | 6.011 | [41] |
图2 (a) Zr3InC2和(b) Zr3AlC2的相对晶格参数和相对体积随压力变化的关系
Fig. 2 Variations of relative lattice parameters and relative volume of (a) Zr3InC2 and (b) Zr3AlC2 with pressure
| MAX | Pressure/ GPa | C11/ GPa | C12/ GPa | C13/ GPa | C33/ GPa | C44/ GPa | C66/ GPa | B/ GPa | G/ GPa | E/ GPa | Cauchy pressure |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Zr3InC2 | 0 | 300 | 73 | 65 | 243 | 87 | 114 | 138 | 100 | 241 | -14 |
| 5 | 308 | 96 | 80 | 277 | 102 | 106 | 156 | 104 | 256 | -6 | |
| 10 | 343 | 95 | 95 | 302 | 112 | 124 | 173 | 116 | 285 | -17 | |
| 15 | 360 | 104 | 106 | 326 | 121 | 128 | 186 | 122 | 301 | -17 | |
| 20 | 376 | 119 | 120 | 352 | 128 | 128 | 202 | 126 | 314 | -9 | |
| 25 | 401 | 124 | 134 | 376 | 139 | 138 | 218 | 135 | 337 | -15 | |
| 30 | 416 | 136 | 146 | 399 | 148 | 140 | 232 | 140 | 351 | -12 | |
| 35 | 435 | 142 | 157 | 418 | 154 | 147 | 244 | 146 | 366 | -12 | |
| 40 | 438 | 164 | 168 | 436 | 160 | 137 | 257 | 145 | 366 | 4 | |
| 45 | 471 | 159 | 184 | 457 | 172 | 156 | 273 | 158 | 396 | -13 | |
| 50 | 487 | 165 | 194 | 474 | 177 | 161 | 284 | 162 | 408 | -12 | |
| Zr3AlC2 | 0 | 310 | 72 | 71 | 253 | 103 | 119 | 144 | 108 | 260 | -31 |
| 5 | 331 | 82 | 82 | 272 | 112 | 125 | 158 | 115 | 278 | -30 | |
| 10 | 353 | 94 | 96 | 286 | 130 | 129 | 173 | 124 | 301 | -36 | |
| 15 | 373 | 99 | 107 | 316 | 134 | 137 | 187 | 130 | 317 | -35 | |
| 20 | 390 | 111 | 120 | 337 | 143 | 139 | 202 | 136 | 333 | -32 | |
| 25 | 402 | 128 | 133 | 355 | 152 | 137 | 216 | 139 | 342 | -24 | |
| 30 | 422 | 130 | 143 | 370 | 161 | 146 | 227 | 146 | 361 | -31 | |
| 35 | 432 | 143 | 154 | 384 | 164 | 145 | 239 | 147 | 366 | -21 | |
| 40 | 442 | 150 | 161 | 398 | 170 | 146 | 247 | 150 | 374 | -20 | |
| 45 | 444 | 166 | 170 | 401 | 172 | 139 | 255 | 147 | 371 | -6 | |
| 50 | 449 | 179 | 180 | 408 | 176 | 135 | 265 | 147 | 372 | 3 |
表2 0~50 GPa压力下Zr3InC2和Zr3AlC2的弹性常数和弹性模量
Table 2 Elastic constants and elastic moduli of Zr3InC2 and Zr3AlC2 under 0-50 GPa pressure
| MAX | Pressure/ GPa | C11/ GPa | C12/ GPa | C13/ GPa | C33/ GPa | C44/ GPa | C66/ GPa | B/ GPa | G/ GPa | E/ GPa | Cauchy pressure |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Zr3InC2 | 0 | 300 | 73 | 65 | 243 | 87 | 114 | 138 | 100 | 241 | -14 |
| 5 | 308 | 96 | 80 | 277 | 102 | 106 | 156 | 104 | 256 | -6 | |
| 10 | 343 | 95 | 95 | 302 | 112 | 124 | 173 | 116 | 285 | -17 | |
| 15 | 360 | 104 | 106 | 326 | 121 | 128 | 186 | 122 | 301 | -17 | |
| 20 | 376 | 119 | 120 | 352 | 128 | 128 | 202 | 126 | 314 | -9 | |
| 25 | 401 | 124 | 134 | 376 | 139 | 138 | 218 | 135 | 337 | -15 | |
| 30 | 416 | 136 | 146 | 399 | 148 | 140 | 232 | 140 | 351 | -12 | |
| 35 | 435 | 142 | 157 | 418 | 154 | 147 | 244 | 146 | 366 | -12 | |
| 40 | 438 | 164 | 168 | 436 | 160 | 137 | 257 | 145 | 366 | 4 | |
| 45 | 471 | 159 | 184 | 457 | 172 | 156 | 273 | 158 | 396 | -13 | |
| 50 | 487 | 165 | 194 | 474 | 177 | 161 | 284 | 162 | 408 | -12 | |
| Zr3AlC2 | 0 | 310 | 72 | 71 | 253 | 103 | 119 | 144 | 108 | 260 | -31 |
| 5 | 331 | 82 | 82 | 272 | 112 | 125 | 158 | 115 | 278 | -30 | |
| 10 | 353 | 94 | 96 | 286 | 130 | 129 | 173 | 124 | 301 | -36 | |
| 15 | 373 | 99 | 107 | 316 | 134 | 137 | 187 | 130 | 317 | -35 | |
| 20 | 390 | 111 | 120 | 337 | 143 | 139 | 202 | 136 | 333 | -32 | |
| 25 | 402 | 128 | 133 | 355 | 152 | 137 | 216 | 139 | 342 | -24 | |
| 30 | 422 | 130 | 143 | 370 | 161 | 146 | 227 | 146 | 361 | -31 | |
| 35 | 432 | 143 | 154 | 384 | 164 | 145 | 239 | 147 | 366 | -21 | |
| 40 | 442 | 150 | 161 | 398 | 170 | 146 | 247 | 150 | 374 | -20 | |
| 45 | 444 | 166 | 170 | 401 | 172 | 139 | 255 | 147 | 371 | -6 | |
| 50 | 449 | 179 | 180 | 408 | 176 | 135 | 265 | 147 | 372 | 3 |
图7 Zr3InC2在0、30、50 GPa压力下的体积模量(a~c)、杨氏模量(d~f)和剪切模量(g~i)的三维曲面图
Fig. 7 3D surface plots of the bulk modulus (a-c), Young’s modulus (d-f), and shear modulus (g-i) of Zr3InC2 at 0, 30 and 50 GPa pressure
| MAX | Pressure/ GPa | ρ/ (kg·m-3) | vt/ (m·s-1) | vl/ (m·s-1) | vm/ (m·s-1) | ΘD/K | Kmin/ (W·m-1·K-1) |
|---|---|---|---|---|---|---|---|
| Zr3InC2 | 0 | 3375.40 | 6301.53 | 3820.01 | 4221.57 | 491.4 | 0.89 |
| 5 | 3486.67 | 6461.24 | 3844.83 | 4256.71 | 501.2 | 0.92 | |
| 10 | 3588.36 | 6715.97 | 4001.02 | 4429.14 | 526.5 | 0.97 | |
| 15 | 3683.39 | 6846.77 | 4051.64 | 4488.03 | 538.2 | 1.01 | |
| 20 | 3769.65 | 6967.78 | 4065.94 | 4509.69 | 545.0 | 1.03 | |
| 25 | 3853.06 | 7143.07 | 4165.50 | 4620.38 | 562.5 | 1.07 | |
| 30 | 3931.13 | 7256.43 | 4200.63 | 4662.40 | 571.4 | 1.09 | |
| 35 | 4005.88 | 7360.26 | 4246.22 | 4714.42 | 581.2 | 1.12 | |
| 40 | 4078.30 | 7385.32 | 4190.43 | 4659.11 | 577.8 | 1.12 | |
| 45 | 4148.03 | 7585.61 | 4334.05 | 4815.97 | 600.5 | 1.17 | |
| 50 | 4215.80 | 7656.01 | 4356.83 | 4842.92 | 607.0 | 1.18 | |
| Zr3AlC2 | 0 | 3375.40 | 7176.31 | 4397.61 | 4854.54 | 573.2 | 1.05 |
| 5 | 3486.67 | 7333.83 | 4464.07 | 4931.28 | 588.6 | 1.09 | |
| 10 | 3588.36 | 7543.72 | 4569.82 | 5050.55 | 608.6 | 1.14 | |
| 15 | 3683.39 | 7684.20 | 4616.35 | 5106.18 | 620.7 | 1.17 | |
| 20 | 3769.65 | 7822.28 | 4657.67 | 5156.31 | 631.7 | 1.20 | |
| 25 | 3853.06 | 7914.84 | 4652.82 | 5157.13 | 636.4 | 1.22 | |
| 30 | 3931.13 | 8037.75 | 4727.22 | 5239.38 | 650.9 | 1.25 | |
| 35 | 4005.88 | 8080.91 | 4698.41 | 5212.88 | 651.7 | 1.26 | |
| 40 | 4078.30 | 8123.75 | 4703.44 | 5220.42 | 656.5 | 1.28 | |
| 45 | 4148.03 | 8097.81 | 4625.81 | 5140.25 | 650.1 | 1.28 | |
| 50 | 4215.80 | 8109.87 | 4578.04 | 5092.24 | 647.5 | 1.28 |
表3
0~50 GPa压力下Zr3InC2和Zr3AlC2的ρ、横向速度(vt)、纵向速度(vl)、平均声速(vm)、ΘD和Kmin Table 3 ρ, transverse velocity (vt), longitudinal velocity (vl), average sound velocity (vm), ΘD, and Kmin of Zr3InC2 and Zr3AlC2 under 0-50 GPa pressure
| MAX | Pressure/ GPa | ρ/ (kg·m-3) | vt/ (m·s-1) | vl/ (m·s-1) | vm/ (m·s-1) | ΘD/K | Kmin/ (W·m-1·K-1) |
|---|---|---|---|---|---|---|---|
| Zr3InC2 | 0 | 3375.40 | 6301.53 | 3820.01 | 4221.57 | 491.4 | 0.89 |
| 5 | 3486.67 | 6461.24 | 3844.83 | 4256.71 | 501.2 | 0.92 | |
| 10 | 3588.36 | 6715.97 | 4001.02 | 4429.14 | 526.5 | 0.97 | |
| 15 | 3683.39 | 6846.77 | 4051.64 | 4488.03 | 538.2 | 1.01 | |
| 20 | 3769.65 | 6967.78 | 4065.94 | 4509.69 | 545.0 | 1.03 | |
| 25 | 3853.06 | 7143.07 | 4165.50 | 4620.38 | 562.5 | 1.07 | |
| 30 | 3931.13 | 7256.43 | 4200.63 | 4662.40 | 571.4 | 1.09 | |
| 35 | 4005.88 | 7360.26 | 4246.22 | 4714.42 | 581.2 | 1.12 | |
| 40 | 4078.30 | 7385.32 | 4190.43 | 4659.11 | 577.8 | 1.12 | |
| 45 | 4148.03 | 7585.61 | 4334.05 | 4815.97 | 600.5 | 1.17 | |
| 50 | 4215.80 | 7656.01 | 4356.83 | 4842.92 | 607.0 | 1.18 | |
| Zr3AlC2 | 0 | 3375.40 | 7176.31 | 4397.61 | 4854.54 | 573.2 | 1.05 |
| 5 | 3486.67 | 7333.83 | 4464.07 | 4931.28 | 588.6 | 1.09 | |
| 10 | 3588.36 | 7543.72 | 4569.82 | 5050.55 | 608.6 | 1.14 | |
| 15 | 3683.39 | 7684.20 | 4616.35 | 5106.18 | 620.7 | 1.17 | |
| 20 | 3769.65 | 7822.28 | 4657.67 | 5156.31 | 631.7 | 1.20 | |
| 25 | 3853.06 | 7914.84 | 4652.82 | 5157.13 | 636.4 | 1.22 | |
| 30 | 3931.13 | 8037.75 | 4727.22 | 5239.38 | 650.9 | 1.25 | |
| 35 | 4005.88 | 8080.91 | 4698.41 | 5212.88 | 651.7 | 1.26 | |
| 40 | 4078.30 | 8123.75 | 4703.44 | 5220.42 | 656.5 | 1.28 | |
| 45 | 4148.03 | 8097.81 | 4625.81 | 5140.25 | 650.1 | 1.28 | |
| 50 | 4215.80 | 8109.87 | 4578.04 | 5092.24 | 647.5 | 1.28 |
图S1 Zr3AlC2在0、30、50 GPa压力下的体积模量(a~c)、杨氏模量(d~f)和剪切模量(g~i)的三维曲面图
Fig. S1 3D surface plots of the bulk modulus (a-c), Young’s modulus (d-f), and shear modulus (g-i) of Zr3AlC2 at 0, 30 and 50 GPa pressure
| [1] |
DING H M, LI M, LI Y B, et al. Progress in structural tailoring and properties of ternary layered ceramics. Journal of Inorganic Materials, 2023, 38(8): 845.
DOI URL |
| [2] |
WANG X H, ZHOU Y C. Intermediate-temperature oxidation behavior of Ti2AlC in air. Journal of Materials Research, 2002, 17(11): 2974.
DOI URL |
| [3] |
BYEON J W, LIU J, HOPKINS M, et al. Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air. Oxidation of Metals, 2007, 68(1): 97.
DOI URL |
| [4] |
BARSOUM M W, YOO H I, POLUSHINA I K, et al. Electrical conductivity, thermopower, and Hall effect of Ti3AlC2, Ti4AlN3, and Ti3SiC2. Physical Review B, 2000, 62(15): 10194.
DOI URL |
| [5] |
BARSOUM M W, EL-RAGHY T, RAWN C J, et al. Thermal properties of Ti3SiC2. Journal of Physics and Chemistry of Solids, 1999, 60(4): 429.
DOI URL |
| [6] |
ZAPATA-SOLVAS E, CHRISTOPOULOS S G, NI N, et al. Experimental synthesis and density functional theory investigation of radiation tolerance of Zr3(Al1-xSix)C2 MAX phases. Journal of the American Ceramic Society, 2017, 100(4): 1377.
DOI URL |
| [7] |
BARSOUM M W, EL-RAGHY T. The MAX phases: unique new carbide and nitride materials: ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight. American Scientist, 2001, 89(4): 334.
DOI URL |
| [8] |
HAJAS D E, BABEN M T, HALLSTEDT B, et al. Oxidation of Cr2AlC coatings in the temperature range of 1230 to 1410 ℃. Surface and Coatings Technology, 2011, 206(4): 591.
DOI URL |
| [9] |
SHEIN I R, IVANOVSKII A L. Elastic properties of superconducting MAX phases from first-principles calculations. Physica Status Solidi: B, 2011, 248(1): 228.
DOI URL |
| [10] |
GALVIN T, HYATT N C, RAINFORTH W M, et al. Slipcasting of MAX phase tubes for nuclear fuel cladding applications. Nuclear Materials and Energy, 2020, 22: 100725.
DOI URL |
| [11] |
HUANG Q. MXene: coming up roses. Journal of Inorganic Materials, 2024, 39(2): 113.
DOI URL |
| [12] |
LI M, LI Y B, LUO K, et al. Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach. Journal of Inorganic Materials, 2019, 34(1): 60.
DOI URL |
| [13] |
DING H M, LI Y B, LU J, et al. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts. Materials Research Letters, 2019, 7(12): 510.
DOI URL |
| [14] |
LI Y B, LI M, LU J, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 2019, 13(8): 9198.
DOI URL |
| [15] |
LI Y B, LIANG J H, DING H M, et al. Near-room temperature ferromagnetic behavior of single-atom-thick 2D iron in nanolaminated ternary MAX phases. Applied Physics Reviews, 2021, 8(3): 031418.
DOI URL |
| [16] |
FASHANDI H, DAHLQVIST M, LU J, et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nature Materials, 2017, 16: 814.
DOI URL |
| [17] |
CUSKELLY D T, RICHARDS E R, KISI E H, et al. Ti3GaC2 and Ti3InC2: first bulk synthesis, DFT stability calculations and structural systematics. Journal of Solid State Chemistry, 2015, 230: 418.
DOI URL |
| [18] |
ZHANG Q Q, LUO J, WEN B, et al. Determination of new α-312 MAX phases of Zr3InC2 and Hf3InC2. Journal of the European Ceramic Society, 2023, 43(15): 7228.
DOI URL |
| [19] |
BORTOLOZO A D, SANT’ANNA O H, DOS SANTOS C A M, et al. Superconductivity in the hexagonal-layered nanolaminates Ti2InC compound. Solid State Communications, 2007, 144(10/11): 419.
DOI URL |
| [20] |
BORTOLOZO A D, SERRANO G, SERQUIS A, et al. Superconductivity at 7.3 K in Ti2InN. Solid State Communications, 2010, 150(29/30): 1364.
DOI URL |
| [21] |
BORTOLOZO A D, FISK Z, SANT’ANNA O H, et al. Superconductivity in Nb2InC. Physica C: Superconductivity, 2009, 469(7/8): 256.
DOI URL |
| [22] |
BAKARDJIEVA S, CECCIO G, VACIK J, et al. Surface morphology and mechanical properties changes induced in Ti3InC2 (M3AX2) thin nanocrystalline films by irradiation of 100 keV Ne+ ions. Surface and Coatings Technology, 2021, 426: 127775.
DOI URL |
| [23] |
BAKARDJIEVA S, HORAK P, VACIK J, et al. Effect of Ar+ irradiation of Ti3InC2 at different ion beam fluences. Surface and Coatings Technology, 2020, 394: 125834.
DOI URL |
| [24] |
CANNAVÓ A, VACÍK J, BAKARDJIEVA S, et al. Effect of medium energy He+, Ne+ and Ar+ ion irradiation on the Hf-In-C thin film composites. Thin Solid Films, 2022, 743: 139052.
DOI URL |
| [25] |
LUO F, GUO Z C, ZHANG X L, et al. Ab initio predictions of structural and thermodynamic properties of Zr2AlC under high pressure and high temperature. Chinese Journal of Chemical Physics, 2015, 28(3): 263.
DOI URL |
| [26] |
QURESHI M W, MA X X, TANG G Z, et al. Structural stability, electronic, mechanical, phonon, and thermodynamic properties of the M2GaC (M=Zr, Hf) MAX phase: an ab initio calculation. Materials, 2020, 13(22): 5148.
DOI URL |
| [27] |
ALI M A, QURESHI M W. DFT insights into the new Hf-based chalcogenide MAX phase Hf2SeC. Vacuum, 2022, 201: 111072.
DOI URL |
| [28] |
ALI M A, QURESHI M W. Newly synthesized MAX phase Zr2SeC: DFT insights into physical properties towards possible applications. RSC Advances, 2021, 11(28): 16892.
DOI URL |
| [29] |
AZZOUZ-RACHED A, HADI M A, RACHED H, et al. Pressure effects on the structural, elastic, magnetic and thermodynamic properties of Mn2AlC and Mn2SiC MAX phases. Journal of Alloys and Compounds, 2021, 885: 160998.
DOI URL |
| [30] |
KRESSE G, HAFNER J. Ab initio molecular dynamics for open- shell transition metals. Physical Review B, 1993, 48(17): 13115.
DOI URL |
| [31] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169.
DOI URL |
| [32] |
WU Z G, COHEN R E. More accurate generalized gradient approximation for solids. Physical Review B, 2006, 73(23): 235116.
DOI URL |
| [33] |
BLÖCHL P E. Projector augmented-wave method. Physical Review B, 1994, 50(24): 17953.
DOI PMID |
| [34] |
MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations. Physical Review B, 1976, 13(12): 5188.
DOI URL |
| [35] |
REUSS A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1929, 9(1): 49.
DOI URL |
| [36] |
HILL R. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society A, 1952, 65(5): 349.
DOI URL |
| [37] |
VOIGT W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik, 1889, 274(12): 573.
DOI URL |
| [38] |
WANG H Z, ZHAN Y Z, PANG M J. The structure, elastic, electronic properties and Debye temperature of M2AlC (M=Nb and Ta) under pressure from first-principles. Computational Materials Science, 2012, 54: 16.
DOI URL |
| [39] |
ANDERSON O L. A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909.
DOI URL |
| [40] |
CLARKE D R. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 2003, 163/164: 67.
DOI URL |
| [41] |
ZAPATA-SOLVAS E, HADI M A, HORLAIT D, et al. Synthesis and physical properties of (Zr1-x, Tix)3AlC2 MAX phases. Journal of the American Ceramic Society, 2017, 100(8): 3393.
DOI URL |
| [42] |
WANG J, YIP S, PHILLPOT S R, et al. Crystal instabilities at finite strain. Physical Review Letters, 1993, 71(25): 4182.
PMID |
| [43] |
RANA M R, ISLAM S, HOQUE K, et al. DFT prediction of the stability and physical properties of M2GaB (M = Sc, V, Nb, Ta). Journal of Materials Research and Technology, 2023, 24: 7795.
DOI URL |
| [44] |
PETTIFOR D G. Theoretical predictions of structure and related properties of intermetallics. Materials Science and Technology, 1992, 8(4): 345.
DOI URL |
| [45] | CHEN L L, DENG Z X, LI M, et al. Phase diagrams of novel MAX phases. Journal of Inorganic Materials, 2020, 35(1): 35. |
| [46] |
QI L, JIN Y C, ZHAO Y H, et al. The structural, elastic, electronic properties and Debye temperature of Ni3Mo under pressure from first-principles. Journal of Alloys and Compounds, 2015, 621: 383.
DOI URL |
| [47] |
CHEN Q, HUANG Z W, ZHAO Z D, et al. Thermal stabilities, elastic properties and electronic structures of B2-MgRE (RE=Sc, Y, La) by first-principles calculations. Computational Materials Science, 2013, 67: 196.
DOI URL |
| [48] |
HADI M A, AHMED I, ALI M A, et al. A comparative DFT exploration on M- and A-site double transition metal MAX phase, Ti3ZnC2. Open Ceramics, 2022, 12: 100308.
DOI URL |
| [49] |
HADI M A, ROKNUZZAMAN M, CHRONEOS A, et al. Elastic and thermodynamic properties of new (Zr3-xTix)AlC2 MAX-phase solid solutions. Computational Materials Science, 2017, 137: 318.
DOI URL |
| [1] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
| [2] | 黄子鹏, 贾文晓, 李玲霞. (Ti0.5W0.5)5+掺杂MgNb2O6陶瓷的晶体结构与太赫兹介电性能[J]. 无机材料学报, 2025, 40(6): 647-655. |
| [3] | 赵凯旋, 刘文鹏, 丁守军, 窦仁勤, 罗建乔, 高进云, 孙贵花, 任浩, 张庆礼. 熔融法制备Nd:YLF原料及其晶体生长和性能研究[J]. 无机材料学报, 2025, 40(5): 529-535. |
| [4] | 黄建锋, 梁瑞虹, 周志勇. W/Cr共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2024, 39(8): 887-894. |
| [5] | 吴玉豪, 彭仁赐, 程春玉, 杨丽, 周益春. HfxTa1-xC体系力学性能及熔化曲线的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 761-768. |
| [6] | 靳宇翔, 宋二红, 朱永福. 3d过渡金属单原子掺杂石墨烯缺陷电催化还原CO2的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 845-852. |
| [7] | 王伟华, 张磊宁, 丁峰, 代兵, 韩杰才, 朱嘉琦, 贾怡, 杨宇. 铱衬底上金刚石外延形核与生长: 第一性原理计算[J]. 无机材料学报, 2024, 39(4): 416-422. |
| [8] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
| [9] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
| [10] | 周靖渝, 李兴宇, 赵晓琳, 王有伟, 宋二红, 刘建军. Ti和Cu掺杂β-NaMnO2正极材料:钠离子电池的倍率和循环性能[J]. 无机材料学报, 2024, 39(12): 1404-1412. |
| [11] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
| [12] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
| [13] | 吴晓维, 张涵, 曾彪, 明辰, 孙宜阳. 杂化泛函HSE和PBE0计算CsPbI3缺陷性质的比较研究[J]. 无机材料学报, 2023, 38(9): 1110-1116. |
| [14] | 丁浩明, 李勉, 李友兵, 陈科, 肖昱琨, 周洁, 陶泉争, 尹航, 柏跃磊, 张毕堃, 孙志梅, 王俊杰, 张一鸣, 黄振莺, 张培根, 孙正明, 韩美康, 赵双, 王晨旭, 黄庆. 三元层状材料结构调控及性能研究进展[J]. 无机材料学报, 2023, 38(8): 845-884. |
| [15] | 宋云霞, 韩颖磊, 颜涛, 罗敏. Rb3Hg2(SO4)3Cl新型紫外非线性光学晶体材料[J]. 无机材料学报, 2023, 38(7): 778-784. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||