[1] DING H M, LI M, LI Y B,et al. Progress in structural tailoring and properties of ternary layered ceramics. Journal of Inorganic Materials, 2023, 38(8): 845. [2] WANG X H, ZHOU Y C.Intermediate-temperature oxidation behavior of Ti2AlC in air.Journal of Materials Research, 2002, 17(11): 2974. [3] BYEON J W, LIU J, HOPKINS M,et al. Microstructure and residual stress of alumina scale formed on Ti2AlC at high temperature in air. Oxidation of Metals, 2007, 68(1): 97. [4] BARSOUM M W, YOO H I, POLUSHINA I K,et al. Electrical conductivity, thermopower, and Hall effect of Ti3AlC2, Ti4AlN3, and Ti3SiC2. Physical Review B, 2000, 62(15): 10194. [5] BARSOUM M W, EL-RAGHY T, RAWN C J,et al. Thermal properties of Ti3SiC2. Journal of Physics and Chemistry of Solids, 1999, 60(4): 429. [6] ZAPATA-SOLVAS E, CHRISTOPOULOS S G, NI N,et al. Experimental synthesis and density functional theory investigation of radiation tolerance of Zr3(Al1-xSix)C2 MAX phases. Journal of the American Ceramic Society, 2017, 100(4): 1377. [7] BARSOUM M W, EL-RAGHY T.The MAX phases: unique new carbide and nitride materials: ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight.American Scientist, 2001, 89(4): 334. [8] HAJAS D E, TO BABEN M, HALLSTEDT B,et al. Oxidation of Cr2AlC coatings in the temperature range of 1230 to 1410 ℃. Surface and Coatings Technology, 2011, 206(4): 591. [9] SHEIN I R, IVANOVSKII A L.Elastic properties of superconducting MAX phases from first-principles calculations.Physica Status Solidi: B, 2011, 248(1): 228. [10] GALVIN T, HYATT N C, RAINFORTH W M,et al. Slipcasting of MAX phase tubes for nuclear fuel cladding applications. Nuclear Materials and Energy, 2020, 22: 100725. [11] HUANG Q.MXene: coming up roses.Journal of Inorganic Materials, 2024, 39(2): 113. [12] LI M, LI Y B, LUO K,et al. Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach. Journal of Inorganic Materials, 2019, 34(1): 60. [13] DING H M, LI Y B, LU J,et al. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts. Materials Research Letters, 2019, 7(12): 510. [14] LI Y B, LI M, LU J,et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 2019, 13(8): 9198. [15] LI Y B, LIANG J H, DING H M,et al. Near-room temperature ferromagnetic behavior of single-atom-thick 2D iron in nanolaminated ternary MAX phases. Applied Physics Reviews, 2021, 8(3): 031418. [16] FASHANDI H, DAHLQVIST M, LU J,et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nature Materials, 2017, 16: 814. [17] CUSKELLY D T, RICHARDS E R, KISI E H,et al. Ti3GaC2 and Ti3InC2: first bulk synthesis, DFT stability calculations and structural systematics. Journal of Solid State Chemistry, 2015, 230: 418. [18] ZHANG Q Q, LUO J, WEN B,et al. Determination of new α-312 MAX phases of Zr3InC2 and Hf3InC2. Journal of the European Ceramic Society, 2023, 43(15): 7228. [19] BORTOLOZO A D, SANT’ANNA O H, DOS SANTOS C A M,et al. Superconductivity in the hexagonal-layered nanolaminates Ti2InC compound. Solid State Communications, 2007, 144(10/11): 419. [20] BORTOLOZO A D, SERRANO G, SERQUIS A,et al. Superconductivity at 7.3 K in Ti2InN. Solid State Communications, 2010, 150(29/30): 1364. [21] BORTOLOZO A D, FISK Z, SANT’ANNA O H,et al. Superconductivity in Nb2InC. Physica C: Superconductivity, 2009, 469(7/8): 256. [22] BAKARDJIEVA S, CECCIO G, VACIK J,et al. Surface morphology and mechanical properties changes induced in Ti3InC2(M3AX2) thin nanocrystalline films by irradiation of 100 keV Ne+ ions. Surface and Coatings Technology, 2021, 426: 127775. [23] BAKARDJIEVA S, HORAK P, VACIK J,et al. Effect of Ar+ irradiation of Ti3InC2 at different ion beam fluences. Surface and Coatings Technology, 2020, 394: 125834. [24] CANNAVÓ A, VACÍK J, BAKARDJIEVA S,et al. Effect of medium energy He+, Ne+ and Ar+ ion irradiation on the Hf-In-C thin film composites. Thin Solid Films, 2022, 743: 139052. [25] LUO F, GUO Z C, ZHANG X L,et al. Ab initio predictions of structural and thermodynamic properties of Zr2AlC under high pressure and high temperature. Chinese Journal of Chemical Physics, 2015, 28(3): 263. [26] QURESHI M W, MA X X, TANG G Z,et al. Structural stability, electronic, mechanical, phonon, and thermodynamic properties of the M2GaC (M = Zr, Hf) MAX phase: an ab initio calculation. Materials, 2020, 13(22): 5148. [27] ALI M A, QURESHI M W.DFT insights into the new Hf-based chalcogenide MAX phase Hf2SeC.Vacuum, 2022, 201: 111072. [28] ALI M A, QURESHI M W.Newly synthesized MAX phase Zr2SeC: DFT insights into physical properties towards possible applications.RSC Advances, 2021, 11(28): 16892. [29] AZZOUZ-RACHED A, HADI M A, RACHED H,et al. Pressure effects on the structural, elastic, magnetic and thermodynamic properties of Mn2AlC and Mn2SiC MAX phases. Journal of Alloys and Compounds, 2021, 885: 160998. [30] KRESSE G, HAFNER J.Ab initio molecular dynamics for open-shell transition metals. Physical Review B, 1993, 48(17): 13115. [31] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes forab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54(16): 11169. [32] WU Z G, COHEN R E.More accurate generalized gradient approximation for solids.Physical Review B, 2006, 73(23): 235116. [33] BLÖCHL P E. Projector augmented-wave method.Physical Review B, 1994, 50(24): 17953. [34] MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations.Physical Review B, 1976, 13(12): 5188. [35] REUSS A.Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle.ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik und Mechanik, 1929, 9(1): 49. [36] HILL R.The elastic behaviour of a crystalline aggregate.Proceedings of the Physical Society A, 1952, 65(5): 349. [37] VOIGT W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik, 1889, 274(12): 573. [38] WANG H Z, ZHAN Y Z, PANG M J.The structure, elastic, electronic properties and Debye temperature of M2AlC (M=Nb and Ta) under pressure from first-principles.Computational Materials Science, 2012, 54: 16. [39] ANDERSON O L.A simplified method for calculating the Debye temperature from elastic constants.Journal of Physics and Chemistry of Solids, 1963, 24(7): 909. [40] CLARKE D R. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 2003, 163/164: 67. [41] ZAPATA-SOLVAS E, HADI M A, HORLAIT D,et al. Synthesis and physical properties of (Zr1-x, Tix)3AlC2 MAX phases. Journal of the American Ceramic Society, 2017, 100(8): 3393. [42] WANG J, YIP S, PHILLPOT S R,et al. Crystal instabilities at finite strain. Physical Review Letters, 1993, 71(25): 4182. [43] RANA M R, ISLAM S, HOQUE K,et al. DFT prediction of the stability and physical properties of M2GaB (M = Sc, V, Nb, Ta). Journal of Materials Research and Technology, 2023, 24: 7795. [44] PETTIFOR D G.Theoretical predictions of structure and related properties of intermetallics.Materials Science and Technology, 1992, 8(4): 345. [45] CHEN L L, DENG Z X, LI M,et al. Phase diagrams of novel MAX phases. Journal of Inorganic Materials, 2020, 35(1): 35. [46] QI L, JIN Y C, ZHAO Y H,et al. The structural, elastic, electronic properties and Debye temperature of Ni3Mo under pressure from first-principles. Journal of Alloys and Compounds, 2015, 621: 383. [47] CHEN Q, HUANG Z W, ZHAO Z D,et al. Thermal stabilities, elastic properties and electronic structures of B2-MgRE (RE=Sc, Y, La) by first-principles calculations. Computational Materials Science, 2013, 67: 196. [48] HADI M A, AHMED I, ALI M A,et al. A comparative DFT exploration on M- and A-site double transition metal MAX phase, Ti3ZnC2. Open Ceramics, 2022, 12: 100308. [49] HADI M A, ROKNUZZAMAN M, CHRONEOS A, et al. Elastic and thermodynamic properties of new (Zr3-xTix)AlC2 MAX-phase solid solutions. Computational Materials Science, 2017, 137: 318-326. |