无机材料学报

• 研究论文 •    

高压下新型MAX相Zr3InC2的第一性原理研究

郭佳芯1, 陈美娟1, 吴浩1, 郑潇然1, 闵楠1, 田辉1, 齐东丽1, 李全军2, 都时禹3,4, 沈龙海1   

  1. 1.沈阳理工大学 理学院, 沈阳 100159;
    2.吉林大学 超硬材料国家重点实验室, 长春 130012;
    3.中国科学院 宁波材料技术与工程研究所, 宁波 315201;
    4.中国石油大学(华东) 材料科学与工程学院, 青岛 266580
  • 收稿日期:2025-02-04 修回日期:2025-04-10
  • 作者简介:郭佳芯(2001-), 女, 硕士研究生. E-mail: 463256229@qq.com
  • 基金资助:
    国家自然科学基金(12274304, 12404060); 2024年辽宁省自然科学基金计划(博士科研启动项目)(1080003000605); 辽宁省教育厅项目(自主选题项目)(1030055000836)

First-principles Study of the Novel MAX Phase Zr3InC2 under High Pressure

GUO Jiaxin1, CHEN Meijuan1, WU Hao1, ZHENG Xiaoran1, MIN Nan1, TIAN Hui1, QI Dongli1, LI Quanjun2, DU Shiyu3,4, SHEN Longhai1   

  1. 1. Shenyang Ligong University, Shenyang 100159, China;
    2. State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
    3. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
    4. School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
  • Received:2025-02-04 Revised:2025-04-10
  • About author:GUO Jiaxin (2001-), female, Master candidate. E-mail: 463256229@qq.com
  • Supported by:
    National Natural Science Foundation of China (12274304, 12404060); 2024 Liaoning Provincial Natural Science Founda tion Program (Doctoral Research Initiation Project) (1080003000605); Liaoning Provincial Department of Education Project (Independent Selection Project) (1030055000836)

摘要: 新型In基MAX相Zr3InC2因其优异的物理性能而受到广泛关注,但其在高压下的研究仍较为有限。基于密度泛函理论(DFT)的第一性原理,本文系统研究了压力对新型MAX相Zr3InC2的晶体结构、力学性质、电子结构和热力学性质的影响。通过与Zr3AlC2进行对比,揭示了当A位元素由Al替换为In时对MAX相材料的晶体结构、物理性质及两者在高压环境下响应的影响。计算得到的Zr3InC2和Zr3AlC2晶格参数与之前的实验报道相一致。晶格参数随压力的变化结果表明,Zr3InC2和Zr3AlC2存在明显的各向异性压缩,即沿c轴方向的压缩率显著高于a轴。弹性常数和声子色散曲线的结果表明Zr3InC2在0~50 GPa范围内保持力学稳定和动力学稳定。此外,不同压力下的泊松比结果表明,Zr3InC2在常压下为脆性,随着压力的增加,其脆性逐渐减弱,40 GPa时首次呈现韧性,其中泊松比和柯西压力在50GPa时的结果存在差异,表明Zr3InC2高压下可能处于脆韧转变的临界区。经对比发现,Zr3InC2的力学性质比Zr3AlC2在高压下的响应更为敏感。电子结构的计算结果显示Zr3InC2具有金属性。热力学分析显示,Zr3InC2在常压下具有相对较低的热膨胀系数,随着压力的增加,Zr3InC2的德拜温度和最小导热系数显著上升,这表明压力能有效调节Zr3InC2的热力学性能,为其在高温领域中的潜在应用提供了理论支持。

关键词: 高压, 第一性原理, MAX相, 晶体结构, 电子结构

Abstract: The novel In-based MAX phase Zr3InC2 has recently attracted considerable attention for its excellent physical properties, yet investigations into its behaviour under high pressure remain limited. This study systematically investigates the effects of pressure on the crystal structure, mechanical properties, electronic structure, and thermodynamic behavior of the novel MAX phase Zr3InC2 using first-principles calculations based on density functional theory (DFT). Comparative analysis with Zr3AlC2 reveals how substituting Al with In at the A-site influences structural and physical properties, as well as responses under high-pressure conditions. Calculated lattice parameters for both Zr3InC2 and Zr3AlC2 show good agreement with previous experimental reports. Results indicate pronounced anisotropic compression, with significantly higher compressibility along the c-axis than the a-axis. Elastic constants and phonon dispersion curves confirm mechanical and dynamic stability of Zr3InC2 up to 50 GPa. Poisson’s ratio analysis suggests brittle behavior at ambient pressure, ductility first appears at 40 GPa. The discrepancy between the Poisson's ratio and the Cauchy pressure at 50 GPa suggests that Zr3InC2 may be near the critical region of a brittle-to-ductile transition under high pressure. Compared with Zr3AlC2, Zr3InC2 exhibits greater sensitivity in mechanical properties under high pressure. Electronic structure calculations reveal its metallic nature. Thermodynamic analysis shows a relatively low thermal expansion coefficient at ambient pressure, while increased pressure leads to a significant rise in Debye temperature and minimum thermal conductivity. These findings highlight the tunability of Zr3InC2’s thermodynamic properties under pressure, offering theoretical support for potential high-temperature applications.

Key words: high pressure, first principles, MAX phase, crystal structure, electronic structure

中图分类号: