| [1] | 
																						 
											  HUANG R, HUANG W, LI D F,  et al. Self-assembled hierarchical carbon/g-C3N4 composite with high photocatalytic activity. Journal of Physics D: Applied Physics, 2018,  51(13): 135501. 
											 												 
																									DOI    
																																					URL    
																																			 											 | 
										
																													
																						| [2] | 
																						 
											  ZHEN W, XIAO N,  SHEN, JI Y F,  et al. Synthesis of novel MoS2/g-C3N4nanocomposites for enhanced photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2020,  31(18): 15885. 
											 												 
																									DOI    
																																															 											 | 
										
																													
																						| [3] | 
																						 
											  JIANG Y B, SUN Z Z, CHEN Q W,  et al. Sulfate modified g-C3N4 with enhanced photocatalytic activity towards hydrogen evolution: the role of sulfate in photocatalysis. Physical Chemistry Chemical Physics, 2020,  22(18): 10116. 
											 												 
																									DOI    
																																					URL    
																																			 											 | 
										
																													
																						| [4] | 
																						 
											  LI K Y, LIANG Y D, YANG H,  et al. New insight into the mechanism of enhanced photo-Fenton reaction efficiency for Fe-doped semiconductors: a case study of Fe/g-C3N4. Catalysis Today, 2020, 371: 58.
											 											 | 
										
																													
																						| [5] | 
																						 
											  WANG X, XIONG W, LI X Y, ZHAO Q D,  et al. Fabrication of MoS2@g-C3N4 core-shell nanospheresfor visible light photocatalytic degradation of toluene. Journal of Nanoparticle Research, 2018,  20(9): 243. 
											 												 
																									DOI    
																																															 											 | 
										
																													
																						| [6] | 
																						 
											  YUN H J, LEE H, KIM N D,  et al. A combination of two visible-light responsive photocatalysts for achieving the Z-Scheme in the solid state. ACS Nano, 2011,  5(5): 4084. 
											 												 
																									DOI    
																																																	PMID
																							 											 | 
										
																													
																						| [7] | 
																						 
											  AKIHIDE I, YUN H, YOSHIMI I,  et al. Reduced graphene oxide as a solid-state electron mediator in z-scheme photocatalytic water splitting under visible light. Journal of the American Chemical Society, 2011,  133(29): 11054. 
											 												 
																									DOI    
																																																	PMID
																							 											 | 
										
																													
																						| [8] | 
																						 
											  CHU K, LIU Y P, LI Y B, GUO Y L,  et al. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Applied Materials & Interfaces, 2020,  12(6): 7081.
											 											 | 
										
																													
																						| [9] | 
																						 
											  CHOUDARI B V R, ZHANG S P, WEN, Z Y,  et al. Constructing highly oriented configuration by few-layer MoS2: toward high-performance lithium-ion batteries and hydrogen evolution reactions. ACS Nano, 2015,  9(12): 12464. 
											 												 
																									DOI    
																																																	PMID
																							 											 | 
										
																													
																						| [10] | 
																						 
											  DONG H C, LI J Z, CHEN M G,  et al. High-throughput production of ZnO-MoS2 graphene heterostructures for highly efficient photocatalytic hydrogen evolution. Materials, 2019,  12(14): 22. 
											 												 
																									DOI    
																																					URL    
																																			 											 | 
										
																													
																						| [11] | 
																						 
											  SARANYA J, SUPANAN A, ORAPHAN T,  et al. Photocatalytic activity enhancement of g-C3N4/BiOBr in selective transformation of primary amines to imines and its reaction mechanism Chemical Engineering Journal, 2020, 394: 124934.
											 											 | 
										
																													
																						| [12] | 
																						 
											  VITALY E S, DMITRY A P, Ekaterina YR,  et al. Anilinonaphthalene sulfonate binds to central cavity of humanhemo globin. Biochemical and Biophysical Research Communications, 2004,  317(3): 761. 
											 												 
																									DOI    
																																					URL    
																																			 											 | 
										
																													
																						| [13] | 
																						 
											  YANG X L, QIAN F F, ZOU G J,  et al. Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Applied Catalysis B Environmental, 2016, 193: 22.
											 											 | 
										
																													
																						| [14] | 
																						 
											  LIU J, ZHANG T, WANG Z,  et al. Enhancement of visible light photocatalytic activities via porous structure of g-C3N4. Applied Catalysis B: Environmental, 2014,  405(3): 229.
											 											 | 
										
																													
																						| [15] | 
																						 
											  HUANG W Z, XU Z D, LIU R,  et al. Tungstenic acid induced assembly of hierarchical flower-like MoS2 spheres. Materials Research Bulletin 2008,  43(10): 2799. 
											 												 
																									DOI    
																																					URL    
																																			 											 | 
										
																													
																						| [16] | 
																						 
											  LIU Y J, LIU H X,  et al. A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation. Applied Surface Science, 2019, 466:133.
											 											 | 
										
																													
																						| [17] | 
																						 
											  YUAN Y J, YE Z J, LU H W,  et al. Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catalysis, 2016,  6(2): 532. 
											 												 
																									DOI    
																																					URL    
																																			 											 | 
										
																													
																						| [18] | 
																						 
											  SUN L L, LI Y F, JIAO X D,  et al. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chemical Society Reviews, 2020,  49(18): 6592.
											 											 | 
										
																													
																						| [19] | 
																						 
											  HOU Y D, LAURSEN A B, ZHANG J S,  et al. Layered nanojunctions for hydrogen-evolution catalysis. Angewandte Chemie International Edition, 2013,  52(13): 3621. 
											 												 
																									DOI    
																																					URL    
																																			 											 | 
										
																													
																						| [20] | 
																						 
											  YANG J, SHI Q, ZHANG R,  et al. BiVO4 quantum tubes loaded on reduced graphene oxide aerogel as efficient photocatalyst for gaseous formaldehyde degradation. Carbon, 2018, 138: 118.
											 											 | 
										
																													
																						| [21] | 
																						 
											  TIAN S C, ZHANG X H, ZHANG Z H,  et al. Capacitive deionization with MoS2/g-C3N4 electrodes. Desalination, 2020, 479: 114.
											 											 | 
										
																													
																						| [22] | 
																						 
											  LIU S S, ZHANG X B, HAO S,  et al. Preparation of MoS2 nanofibers by electrospinning. Materials Letters, 2012,73: 223.
											 											 | 
										
																													
																						| [23] | 
																						 
											  LI X L, LI Y D,  et al. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chemistry-a European Journal,  2003(9): 22.
											 											 | 
										
																													
																						| [24] | 
																						 
											  ZHOU X S, LUO Z H, TAO P F,  et al. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 nanospheres modified porous g-C3N4. Materials Chemistry and Physics, 2014, 143: 1462.
											 											 | 
										
																													
																						| [25] | 
																						 
											  YU J G, WANG S H, CHENG B,  et al. Noble metal-free Ni(OH)2-g-C3N4 composite photocatalyst with enhanced visible- light photocatalytic H2-production activity. Catalysis Science & Technology, 2013, (3): 1782.
											 											 | 
										
																													
																						| [26] | 
																						 
											  GUO B R, LIU B, LI C,  et al. S-scheme Ti0.7Sn0.3O2/g-C3N4 heterojunction composite for enhanced photocatalytic pollutants degradation. Journal of Environmental Chemical Engineering, 2022,  10(2): 107.
											 											 | 
										
																													
																						| [27] | 
																						 
											  崔晓莉. 半导体电极的平带电位. 化学通报, 2017(80): 1160.
											 											 | 
										
																													
																						| [28] | 
																						 
											  HUANG Z F, SONG J, WANG X,  et al. Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy, 2017, 40: 308.
											 											 | 
										
																													
																						| [29] | 
																						 
											  YU W, CHEN J, SHANG T,  et al. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Applied Catalysis B: Environmental, 2017, 219: 693.
											 											 | 
										
																													
																						| [30] | 
																						 
											  YANG B, ZHAO J J, YANG W D,  et al. A step-by-step synergistic stripping approach toward ultra-thin porous g-C3N4 nanosheets with high conduction band position for photocatalystic CO2 reduction. Journal of Colloid and Interface Science, 2021,  589(12): 179. 
											 												 
																									DOI    
																																					URL    
																																			 											 | 
										
																													
																						| [31] | 
																						 
											  DONG F, ZHAO Z W, XIONG T,  et al. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. Applied Materials & Interfaces, 2013, 5(21): 11392.
											 											 |