无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 651-659.DOI: 10.15541/jim20210438 CSTR: 32189.14.10.15541/jim20210438
所属专题: 【材料计算】计算材料(202409)
孙铭(), 邵溥真, 孙凯, 黄建华, 张强(
), 修子扬(
), 肖海英, 武高辉
收稿日期:
2021-07-12
修回日期:
2021-11-02
出版日期:
2022-06-20
网络出版日期:
2021-12-16
通讯作者:
张 强, 教授. E-mail: zhang_tsiang@hit.edu.cn;作者简介:
孙 铭(1998-), 女, 硕士研究生. E-mail: s1257973295@163.com
基金资助:
SUN Ming(), SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang(
), XIU Ziyang(
), XIAO Haiying, WU Gaohui
Received:
2021-07-12
Revised:
2021-11-02
Published:
2022-06-20
Online:
2021-12-16
Contact:
ZHANG Qiang, professor. E-mail: zhang_tsiang@hit.edu.cn;About author:
SUN Ming (1998–), female, Master candidate. E-mail: s1257973295@163.com
Supported by:
摘要:
本研究采用基于密度泛函理论的第一性原理方法, 在广义梯度近似下, 分别建立了具有不同碳氧比的“铝/氧化石墨烯/铝(Al/GO/Al)”界面模型以及含缺陷“Al/GO/Al”三层界面模型。探讨了含氧官能团和单空位缺陷、双空位缺陷以及拓扑缺陷对还原氧化石墨烯增强铝基复合材料界面性质的影响。研究结果表明: 在“Al/GO/Al”界面模型中, 环氧基优于碳原子而与铝原子产生明显的电荷交互作用, 氧原子净电荷为-0.98 e, 铝原子净电荷为0.46 e, 环氧基有利于复合材料中还原氧化石墨烯与铝基体之间的界面结合。当缺陷存在时, 含缺陷的“Al/GO/Al”界面模型中缺陷处碳原子净电荷在-0.05 e至-0.38 e区间, 环氧基与碳原子之间存在较弱的相互作用, 与铝原子间相互作用明显较强。环氧基抑制了空位缺陷处碳原子与铝原子之间的反应, 可保护含空位还原氧化石墨烯中碳原子结构的完整性。本研究可为开发高性能Al/GO/Al基复合材料提供理论指导。
中图分类号:
孙铭, 邵溥真, 孙凯, 黄建华, 张强, 修子扬, 肖海英, 武高辉. RGO/Al复合材料界面性质第一性原理研究[J]. 无机材料学报, 2022, 37(6): 651-659.
SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites[J]. Journal of Inorganic Materials, 2022, 37(6): 651-659.
图1 GO(Gr)原子模型与Al/GO(Gr)/Al界面模型
Fig. 1 GO(Gr) atomic model and Al/GO(Gr)/Al interface model (a) Gr atom model; (b-e) GO atomic models with C/O ratios of 24 : 1, 12 : 1, 8 : 1, and 6 : 1, respectively; (f) Al/Gr/Al interface model; (g-j) Al/GO/Al interface models with C/O ratios of 24 : 1, 12 : 1, 8:1, and 6 : 1, respectively
图2 含缺陷GO原子模型与含缺陷Al/GO/Al界面模型
Fig. 2 GO atom model and Al/GO/Al interface model both with defects (a) GO with single-vacancy defect; (b) GO with double-vacancy defect; (c) GO with Stone-Wales defect; (d) Al/GO/Al interface model with single-vacancy defect; (e) Al/GO/Al interface model with double- vacancy defect; (f) Al/GO/Al interface model with Stone-Wales defect
Interface model | EAl/GO(Gr)/Al/eV | Wad/(J·m-2) | Eint/(J·m-2) |
---|---|---|---|
Al/Gr/Al | -7790.9254 | 2.1894 | -2.1918 |
Al/GO(1)/Al | -8230.1766 | 2.8727 | -3.2239 |
Al/GO(2)/Al | -8668.9362 | 3.5572 | -4.1941 |
Al/GO(3)/Al | -9108.2092 | 4.2686 | -5.2290 |
表1 Al/GO(Gr)/Al界面能量计算结果
Table 1 Calculation results of energy at the interface of Al/GO(Gr)/Al interface model
Interface model | EAl/GO(Gr)/Al/eV | Wad/(J·m-2) | Eint/(J·m-2) |
---|---|---|---|
Al/Gr/Al | -7790.9254 | 2.1894 | -2.1918 |
Al/GO(1)/Al | -8230.1766 | 2.8727 | -3.2239 |
Al/GO(2)/Al | -8668.9362 | 3.5572 | -4.1941 |
Al/GO(3)/Al | -9108.2092 | 4.2686 | -5.2290 |
Atom | Location | s | p | Charge/e |
---|---|---|---|---|
Al | Interface | 1.28 | 1.70 | 0.02 |
C | Interface | 1.05 | 2.98 | -0.03 |
表2 Al/Gr/Al界面模型Mulliken布居分析
Table 2 Mulliken populations of Al/Gr/Al interface model
Atom | Location | s | p | Charge/e |
---|---|---|---|---|
Al | Interface | 1.28 | 1.70 | 0.02 |
C | Interface | 1.05 | 2.98 | -0.03 |
Atom | Location | s | p | Charge/e |
---|---|---|---|---|
Al | Location 1 | 1.04 | 1.50 | 0.46 |
Location 2 | 1.28 | 1.70 | 0.02 | |
O | Interface | 1.88 | 5.10 | -0.98 |
C | Interface | 1.05 | 2.97 | -0.03 |
表3 Al/GO/Al界面模型Mulliken布居分析
Table 3 Mulliken populations of Al/GO/Al interface model
Atom | Location | s | p | Charge/e |
---|---|---|---|---|
Al | Location 1 | 1.04 | 1.50 | 0.46 |
Location 2 | 1.28 | 1.70 | 0.02 | |
O | Interface | 1.88 | 5.10 | -0.98 |
C | Interface | 1.05 | 2.97 | -0.03 |
图8 不同缺陷Al/GO/Al界面模型中不同原子PDOS曲线
Fig. 8 PDOS for different atoms in Al/GO/Al interface models with different defects (a) PDOS for Al atom; (b) PDOS for C atom; (c) PDOS for O atom
图9 含缺陷的Al/GO/Al差分电荷密度
Fig. 9 Electron density difference of Al/GO/Al with different defects (a, b) Single-vacancy defect in YZ direction; (c, d) Single-vacancy defect in vertical Z direction; (e, f) Double-vacancy defect in YZ direction; (g, h) Double-vacancy defect in vertical Z direction; (I, j) Stone-Wales defect in YZ direction; (k, l) Stone-sWales defect in vertical Z direction
Model | Atom | Position | s | p | Charge /e |
---|---|---|---|---|---|
SV | Al | Al1 | 1.05 | 1.47 | 0.48 |
Al2 | 1.02 | 1.58 | 0.41 | ||
Al3 | 1.22 | 1.65 | 0.13 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.24 | 3.13 | -0.38 | |
C2-C3 | 1.10-1.19 | 2.97-2.91 | -0.07- -0.10 | ||
DV | Al | Al1 | 1.05 | 1.47 | 0.48 |
Al2 | 1.22 | 1.63 | 0.15 | ||
Al3 | 1.22 | 1.71 | 0.07 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.20 | 2.94 | -0.14 | |
C2-C4 | 1.06-1.18 | 2.99-2.91 | -0.05- -0.09 | ||
SW | Al | Al1 | 1.05 | 1.45 | 0.50 |
Al2 | 1.07 | 1.60 | 0.33 | ||
Al3 | 1.22 | 1.68 | 0.10 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.15 | 3.09 | -0.24 | |
C2 | 1.08 | 3.04 | -0.12 |
表4 含缺陷Al/GO/Al布居分析
Table 4 Mulliken populations of Al/GO/Al with defects
Model | Atom | Position | s | p | Charge /e |
---|---|---|---|---|---|
SV | Al | Al1 | 1.05 | 1.47 | 0.48 |
Al2 | 1.02 | 1.58 | 0.41 | ||
Al3 | 1.22 | 1.65 | 0.13 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.24 | 3.13 | -0.38 | |
C2-C3 | 1.10-1.19 | 2.97-2.91 | -0.07- -0.10 | ||
DV | Al | Al1 | 1.05 | 1.47 | 0.48 |
Al2 | 1.22 | 1.63 | 0.15 | ||
Al3 | 1.22 | 1.71 | 0.07 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.20 | 2.94 | -0.14 | |
C2-C4 | 1.06-1.18 | 2.99-2.91 | -0.05- -0.09 | ||
SW | Al | Al1 | 1.05 | 1.45 | 0.50 |
Al2 | 1.07 | 1.60 | 0.33 | ||
Al3 | 1.22 | 1.68 | 0.10 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.15 | 3.09 | -0.24 | |
C2 | 1.08 | 3.04 | -0.12 |
图10 含缺陷的GO原子模型和相应的差分电荷密度
Fig. 10 GO atom model with defects (a-c) and corresponding electron density difference (d-f) at the interface of Al/GO/Al model (a, d) Single-vacancy; (b, e) Double-vacancy; (c, f) Stone-Wales defects
[1] | LIU J H, KHAN U, COLEMAN J, et al. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: powder synthesis and prepared composite characteristics. Materials & Design, 2016, 94(5): 87-94. |
[2] |
GHASALI E, SANGPOUR P, JAM A, et al. Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Archives of Civil and Mechanical Engineering, 2018, 18(4): 1042-1054.
DOI URL |
[3] | ZHANG C X, ZENG Y P, YAO D X, et al. The improved mechanical properties of Al matrix composites reinforced with oriented β-Si3N4 whisker. Journal of Materials Science & Technology, 2019, 35(7): 1345-1353. |
[4] |
ZHANG L, HOU GM, ZHAI W, et al. Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles. Journal of Alloys and Compounds, 2018, 748: 854-860.
DOI URL |
[5] | XU Z, BANDO Y, LIU L, et al. Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. ACS Nano, 2011, 6(5): 4401-4406. |
[6] |
CASTRO-NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene. Reviews of Modern Physics, 81(1): 109-162.
DOI URL |
[7] |
LEE C, WEI X D, KVSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388.
DOI URL |
[8] |
CAO M, LUO Y Z, XIE Y Q, et al. The influence of interface structure on the electrical conductivity of graphene embedded in aluminum matrix. Advanced Materials Interfaces, 2019, 6(13): 1900468.
DOI URL |
[9] | 林启民, 崔建功, 鑫颜, 等. 单点缺陷氧化石墨烯电子结构与光学特性的第一性原理研究. 物理学报, 2020, 35(10): 1117-1122. |
[10] |
KUANG D, HU W B. Research progress of graphene composites. Journal of Inorganic Materials, 2013, 28(3): 235-246.
DOI |
[11] |
HWANG J, YOON T, JIN S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Advanced Materials, 2013, 25(46): 6724-6729.
DOI URL |
[12] | ZHANG X, SHI C S, LIU E Z, et al. Effect of interface structure on the mechanical properties of graphene nanosheets reinforced copper matrix composites. ACS Applied Materials & Interfaces, 2018, 10(43): 37586-37601. |
[13] |
ZHANG X, SHI C S, LIU E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network. Nanoscale, 2017, 9(33): 11929-11938.
DOI URL |
[14] |
AZAR M H, SADRI B, NEMATI A, et al. Investigating the microstructure and mechanical properties of aluminum-matrix reinforced-graphene nanosheet composites fabricated by mechanical milling and equal-channel angular pressing. Nanomaterials, 2019, 9(8): 1070.
DOI URL |
[15] |
WANG J Y, LI Z Q, FAN G L, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, 2012, 66(8): 594-597.
DOI URL |
[16] |
ZHOU H T, XIONG X Y, LUO F, et al. The study of the in-situ deposition technique for fabricating. Acta Physica Sinica, 2021, 70(8): 086201.
DOI URL |
[17] |
GAO X, YUE H Y, GUO E J, et al. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Materials and Design, 2016, 94: 54-60.
DOI URL |
[18] |
JIANG Y Y, TAN Z Q, XU R, et al. Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling. Composites Part A: Applied Science and Manufacturing, 2018, 111: 73-82.
DOI URL |
[19] |
LI Z, GUO Q, LI Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Letters, 2015, 15(12): 8077-8083.
DOI URL |
[20] | 何小晶, 原梅妮, 李立州, 等. 石墨烯增强钛基复合材料界面的第一性原理研究. 热加工工艺, 2018, 47(10): 96-100. |
[21] |
CHEN Y T, LIU X H, ZHANG T B, et al. Interface intrinsic strengthening mechanism on the tensile properties of Al2O3/Al composites. Computational Materials Science, 2019, 169: 109131.
DOI URL |
[22] |
XIE H N, CHEN Y T, ZHANG T B, et al. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: a first principles study. Applied Surface Science, 2020, 527: 146817.
DOI URL |
[23] |
LIU P, XIE J P, WANG A Q, et al. First-principles prediction of enhancing graphene/Al interface bonding strength by graphene doping strategy. Applied Surface Science, 2020, 517: 146040.
DOI URL |
[24] |
ZHANG X, WANG S Q. Interfacial strengthening of graphene/ aluminum composites through point defects: a first-principles study. Nanomaterials, 2021, 11(3): 738-752.
DOI URL |
[25] |
TKACHEV S V, BUSLAEVA E Y, NAUMKIN A V, et al. Reduced graphene oxide. Inorganic Materials, 2012, 48(8): 796-802.
DOI URL |
[26] |
SHEN J F, HU Y Z, SHI M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chemistry of Materials, 2009, 21(15): 3514-3520.
DOI URL |
[27] |
ZHAO Z Y, ZHAO W J, BAI P K, et al. The interfacial structure of Al/Al4C3 in graphene/Al composites prepared by selective laser melting: first-principles and experimental. Materials Letters, 2019, 255: 126559.
DOI URL |
[28] |
WU Y H, ZHAN K, YANG Z, et al. Graphene oxide/Al composites with enhanced mechanical properties fabricated by simple electrostatic interaction and powder metallurgy. Journal of Alloys and Compounds, 2019, 775: 233-240.
DOI URL |
[29] |
KIM D, NAM S, ROH A, et al. Effect of interfacial features on the mechanical and electrical properties of rGO/Al composites. Journal of Materials Science, 2017, 52(20): 12001-12012.
DOI URL |
[30] |
JU J M, WANG G, SIM K H. Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties. Journal of Alloys and Compounds, 2017, 704: 585-592.
DOI URL |
[31] |
CHEN Y C, LIU Y, ZHOU F, et al. The interface properties of defective graphene on aluminium: a first-principles calculation. Computational Materials Science, 2021, 188: 110157.
DOI URL |
[1] | 吴玉豪, 彭仁赐, 程春玉, 杨丽, 周益春. HfxTa1-xC体系力学性能及熔化曲线的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 761-768. |
[2] | 靳宇翔, 宋二红, 朱永福. 3d过渡金属单原子掺杂石墨烯缺陷电催化还原CO2的第一性原理研究[J]. 无机材料学报, 2024, 39(7): 845-852. |
[3] | 王伟华, 张磊宁, 丁峰, 代兵, 韩杰才, 朱嘉琦, 贾怡, 杨宇. 铱衬底上金刚石外延形核与生长: 第一性原理计算[J]. 无机材料学报, 2024, 39(4): 416-422. |
[4] | 张宇晨, 陆知遥, 赫晓东, 宋广平, 朱春城, 郑永挺, 柏跃磊. 硫族MAX相硼化物的物相稳定性和性能预测[J]. 无机材料学报, 2024, 39(2): 225-232. |
[5] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[6] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[7] | 吴晓维, 张涵, 曾彪, 明辰, 孙宜阳. 杂化泛函HSE和PBE0计算CsPbI3缺陷性质的比较研究[J]. 无机材料学报, 2023, 38(9): 1110-1116. |
[8] | 张守超, 陈洪雨, 刘洪飞, 杨羽, 李欣, 刘德峰. 6H-SiC中子辐照肿胀高温回复及光学特性研究[J]. 无机材料学报, 2023, 38(6): 678-686. |
[9] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[10] | 文志勤, 黄彬荣, 卢涛仪, 邹正光. 压力对PbTiO3结构和热物性质影响的第一性原理研究[J]. 无机材料学报, 2022, 37(7): 787-794. |
[11] | 肖美霞, 李苗苗, 宋二红, 宋海洋, 李钊, 毕佳颖. 表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究[J]. 无机材料学报, 2022, 37(6): 660-668. |
[12] | 袁罡, 马新国, 贺华, 邓水全, 段汪洋, 程正旺, 邹维. 平面应变对二维单层MoSi2N4能带结构和光电性质的影响[J]. 无机材料学报, 2022, 37(5): 527-533. |
[13] | 冯清影, 刘东, 张莹, 冯浩, 李强. 太阳能驱动的两步热化学循环二氧化碳裂解反应活性材料的热力学与第一性原理评价[J]. 无机材料学报, 2022, 37(2): 223-229. |
[14] | 彭军辉, TIKHONOV Evgenii. 空位对Hf-Ta-C体系的结构、力学性质及电子性质影响的第一性原理研究[J]. 无机材料学报, 2022, 37(1): 51-57. |
[15] | 张晓君, 李佳乐, 邱吴劼, 杨淼森, 刘建军. 钠离子电池正极材料P2-Nax[Mg0.33Mn0.67]O2的电化学活性研究[J]. 无机材料学报, 2021, 36(6): 623-628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||