[1] |
GEIM A K, NOVOSELOV K S. The rise of graphene. Nature Materials, 2007,6(3):183-191.
|
[2] |
XIA F N, WANG H, XIAO D, et al.. Two-dimensional material nanophotonics. Nature Photonics, 2014,8(12):899-907.
|
[3] |
OOSTINGA J B, HEERSCHE H B, LIU X L, et al.. Gate-induced insulating state in bilayer graphene devices. Nature Materials, 2008,7(2):151-157.
|
[4] |
SEOL J H, JO I, MOORE A L, et al.. Two-dimensional phonon transport in supported graphene. Science, 2010,328(5975):213-216.
|
[5] |
LI Y G, WANG H L, XIE L M, et al.. MoS2 nanoparticles grown on graphene: an advanced catalyst for hydrogen evolution-reaction. Journal of the American Chemical Society, 2011,133(19):7296-7299.
|
[6] |
BERNARDI M, PALUMMO M, GROSMAN J C. Extraordinarysunlight absorption and one nanometer thick photovoltaics using two- dimensional monolayer materials. Nano Letters, 2013,13(8):3664-3670.
|
[7] |
PERKINS F K, FRIEDMAN A L, COBAS E, et al.. Chemical vapor sensing with monolayer MoS2. Nano Letters, 2013,13(2):668-673.
|
[8] |
PATIL S, HARIE A, SATHAYE S, et al.. Development of a novel method to grow mono/few-layered MoS2 films and MoS2-graphene hybrid films for supercapacitor applications. CrystEngComm, 2014,16(47):10845-10855.
|
[9] |
谢颖. 二硫化钼缺陷能带调制与室温中远红外光电探测性能研究. 济南: 山东大学晶体材料研究所博士学位论文, 2020.
|
[10] |
HONG Y L, LIU Z B, WANG L, et al.. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science, 2020,369(6504):670-674.
|
[11] |
CAI Y Q, ZHANG G, ZHANG Y W. Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. Journal of the American Chemical Society, 2014,136(17):6269-6275.
|
[12] |
BAFEKRY A, FARAHJ M, HOAT D M, , et al. MoSi2N4 sing- lelayer: a novel two-dimensional material with outstanding mechanical. thermal, electronic, optical, photocatalytic properties. Journal of Physics D: Applied Physics, 2021, 54(15): 155303-1-8.
|
[13] |
LI Q F, ZHOU W X, WAN X G, et al. Strain effects on monolayer MoSi2N4: ideal strength. Strain effects on monolayer MoSi2N4: ideal strength and failure mechanism. Physica E, 2021, 131: 114753-1-6.
|
[14] |
YU J H, ZHOU J, WAN X G, , et al. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New Journal of Physics. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New Journal of Physics, 2021, 23: 033005-1-8.
|
[15] |
ZHONG H, XIONG W Q, LÜ P F, , et al. Strain induced semiconductor to metal transition in MA2Z4 bilayers. Physical Review B. Strain induced semiconductor to metal transition in MA2Z4 bilayers. Physical Review B, 2021, 103(8): 085124-1-7.
|
[16] |
CAO L M, ZHOU G H, WANG Q Q, et al. Two-dimensional van der waals electrical contact to monolayer MoSi2N4. Applied Physics Letters Two-dimensional van der waals electrical contact to monolayer MoSi2N4. Applied Physics Letters, 2021, 118: 013106-1-6.
|
[17] |
GUO S D, ZHU Y T, MU W Q, et al. Structure effect on intrinsic piezoelectricity in septuple-atomic-layer MSi2N4. (M = Mo and W). Computational Materials Science, 2021,188: 110223-1-8.
|
[18] |
MORTAZAVI B, JAVVAJI B, SHOJAEI F, et al. Exceptional piezoelectricity. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano Energy, 2021, 82: 105716-1-13.
|
[19] |
HUI Y Y, LIU X F, JIE W, et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano, 2013,7(8):7126-7131.
|
[20] |
TSOUKLERI G, PARTHENIOS J, PAPAGELIS K, et al.. Subjecting a gr-aphene monolayer to tension and compression. Small, 2010,5(21):2397-2402.
|
[21] |
PENG Z W, CHEN X L, FAN Y L, et al.. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light: Science & Applications, 2020,9:190-215.
|
[22] |
VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990,41(11):7892-7895.
|
[23] |
TKATCHENKO A, DISTASIO R A, CAR R, , et al. Accurate. Accurate and efficient method for many-body van der waals interactions. Physical Review Letters, 2012, 108(23): 236402-1-5.
|
[24] |
ORTMANN F, BECHSTEDT F, SCHMIDT W G, et al.. Semiempirical van der waals correction to the density functional description of solids and molecular structures. Physical Review B, 2006,73(20):205101.
|
[25] |
SEGALL M D, LINDAN P, PROBERT M J, et al.. First principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002,14(11):2717-2744.
|
[26] |
DONG L, NAMBURU R R, O’REGAN T P, et al. Theoretical study on strain-induced variations in electronic properties of monolayer MoS2. Journal of Materials Science, 2014,49(19):6762-6771.
|
[27] |
LI C, FAN B W, LI W Y. Bandgap engineering of monolayer MoS2 under strain: a DFT study. Journal of the Korean Physical Society, 2015,66(11):1789-1793.
|
[28] |
MIAO Y P, MA F, HUANG Y H, et al.. Strain effects on electronic states and lattice vibration of monolayer MoS2. Physica E: Low-dimensional Systems and Nanostructures, 2015,71:1-6.
|
[29] |
WU M S, XU B, LIU G, , et al. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102-1-5.
|
[30] |
LIN Q M, CUI J G, YAN X, et al.. First-principles study on electronic structure and optical properties of single point defect graphene oxide. Journal of Inorganic Materials, 2020,35(10):1117-1122.
|
[31] |
YU Z Q, ZHANG C H, LI S D, et al. Electronic structures and optoelectronic properties of C/Ge-doped silicon nanotubes. Journal of Inorganic Materials, 2015,30(3):233-239.
|
[32] |
LI J, LIU T Y, YAO S A, et al.. First principles study on the property of O vacancy in LuPO4 crystal. Journal of Inorganic Materials, 2019,34(8):879-884.
|
[33] |
沈学础. 半导体光谱和光学性质. 北京: 科学出版社, 2002: 1-32.
|
[34] |
洪艺伦. 新型二维层状过渡金属硅氮化合物的制备与物性研究: 合肥: 中国科学技术大学博士学位论文, 2020.
|