无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 660-668.DOI: 10.15541/jim20210550 CSTR: 32189.14.10.15541/jim20210550
所属专题: 【能源环境】锂离子电池(202409); 【材料计算】计算材料(202409); 【信息功能】MAX层状材料、MXene及其他二维材料(202409)
肖美霞1(), 李苗苗1, 宋二红2(
), 宋海洋1(
), 李钊1, 毕佳颖1
收稿日期:
2021-08-29
修回日期:
2021-10-24
出版日期:
2022-06-20
网络出版日期:
2021-12-16
通讯作者:
宋二红, 副研究员. E-mail: ehsong@mail.sic.ac.cn;作者简介:
肖美霞(1982-), 女, 副教授. E-mail: mxxiao@xsyu.edu.cn
基金资助:
XIAO Meixia1(), LI Miaomiao1, SONG Erhong2(
), SONG Haiyang1(
), LI Zhao1, BI Jiaying1
Received:
2021-08-29
Revised:
2021-10-24
Published:
2022-06-20
Online:
2021-12-16
Contact:
SONG Erhong, associate professor. E-mail: ehsong@mail.sic.ac.cn;About author:
XIAO Meixia (1982–), female, associate professor. E-mail: mxxiao@xsyu.edu.cn
Supported by:
摘要:
Mxenes以其优异的比表面积、高导电率和组分可调性而受到广泛研究, 并用作高效锂离子电池的电极材料。然而, 其有限的存储容量以及锂离子扩散引起的剧烈晶格膨胀限制了MXenes作为电极材料的应用。本研究设计了具有代表性的MXene材料卤化(氟化、氯化或溴化)-Ti3C2。采用基于密度泛函理论的范德瓦耳斯修正的第一性原理计算方法研究了表面端基(T=F-、Cl-和Br-)修饰对锂离子电池中Ti3C2负极的原子结构、电学性质、力学性质以及电化学性能的影响。研究表明, Ti3C2T2单层具有良好的结构稳定性、力学性质和导电性质。相比Ti3C2F2和Ti3C2Br2, Ti3C2Cl2单层具有较大的弹性模量(沿二维薄膜两个方向的弹性模量分别为321.70和329.43 N/m)、较低的锂离子扩散势垒(0.275 eV)、开路电压(0.54 V)和较大的理论存储容量(化学计量比为Ti3C2Cl2Li6时达674.21 mA·h/g), 这表明Ti3C2Cl2单层作为锂电池电极具有良好的安全稳定性和充放电速率。此外, 端基氯化扩大了层间距, 进而提高了Ti3C2Cl2中锂离子的可穿透性和快速充放电速率。本研究表明, 表面氯化的Ti3C2纳米薄膜是一种很有前途的锂电池负极材料, 为其它的MXenes基电极材料设计与开发提供了重要的设计思路。
中图分类号:
肖美霞, 李苗苗, 宋二红, 宋海洋, 李钊, 毕佳颖. 表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究[J]. 无机材料学报, 2022, 37(6): 660-668.
XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries[J]. Journal of Inorganic Materials, 2022, 37(6): 660-668.
图1 M1、M2、M3和M4结构的Ti3C2T2原子构型的俯视图和主视图
Fig. 1 Top and side views of M1, M2, M3, and M4 Ti3C2T2 configurations Blue, black and nattier blue balls represent Ti, C and T atoms, respectively, where T denotes F, Cl or Br atoms Colorful views ave arailable on website
Ti3C2T2 | M1/eV | M2/eV | M3/eV | M4/eV |
---|---|---|---|---|
Ti3C2F2 | -4.23 | -4.60 | -4.94 | -4.77 |
Ti3C2Cl2 | -2.44 | -3.07 | -3.33 | -3.20 |
Ti3C2Br2 | -1.95 | -2.57 | -2.81 | -2.69 |
表1 四种构型的Ti3C2T2形成能Ef(eV)
Table 1 Formation energy Ef of (eV) Ti3C2T2 with four configurations
Ti3C2T2 | M1/eV | M2/eV | M3/eV | M4/eV |
---|---|---|---|---|
Ti3C2F2 | -4.23 | -4.60 | -4.94 | -4.77 |
Ti3C2Cl2 | -2.44 | -3.07 | -3.33 | -3.20 |
Ti3C2Br2 | -1.95 | -2.57 | -2.81 | -2.69 |
Ti3C2T2 | a /nm | lTi2-T /nm | lTi2-C /nm |
---|---|---|---|
Ti3C2F2 | 0.308 | 0.217 | 0.208 |
Ti3C2Cl2 | 0.319 | 0.251 | 0.211 |
Ti3C2Br2 | 0.325 | 0.264 | 0.213 |
表2 M3-Ti3C2T2的晶格常数a、键长lTi2-T和lTi2-C
Table 2 Lattice parameters a of M3-Ti3C2T2 and corresponding bond lengths of lTi2-T and lTi2-C
Ti3C2T2 | a /nm | lTi2-T /nm | lTi2-C /nm |
---|---|---|---|
Ti3C2F2 | 0.308 | 0.217 | 0.208 |
Ti3C2Cl2 | 0.319 | 0.251 | 0.211 |
Ti3C2Br2 | 0.325 | 0.264 | 0.213 |
图2 M3-Ti3C2T2部分态密度(PDOS)和电荷密度差图
Fig. 2 Partial density of states (PDOS) and electron density difference of M3-Ti3C2T2 Blue, black and nattier blue balls represent Ti, C and T atoms, respectively, and red- and blue-colored regions indicate electron accumulation and depletion, respectively Colorful figures are available on website
图3 M3-Ti3C2T2中沿(a) x和(b) y方向的应变-应变能曲线及(c) x和y方向的弹性模量
Fig. 3 Strain energy to strain curves of M3-Ti3C2T2 along (a) x- and (b) y-direction, respectively, and (c) elasticmodulus values in x and y directions Blue, black and nattier blue balls represent Ti, C and T atoms, respectively Colorful figures are available on website
Ti3C2T2-Li | Eab/eV | Δq/e | Δh/nm |
---|---|---|---|
M3-Ti3C2F2-LiT2 | -1.21 | 0.61 | 0.021 |
M3-Ti3C2Cl2-LiT1 | -0.72 | 0.40 | 0.026 |
M3-Ti3C2Br2-LiT1 | -0.41 | 0.33 | 0.028 |
表3 当锂离子吸附在Ti3C2T2表面上形成稳定的M3-Ti3C2T2-Li时, 锂离子的吸附能(Eab)、电荷转移量(Δq)和吸附高度(Δh)
Table 3 Adsorption energy (Eab), charge transfer amount (Δq) and adsorption height (Δh), of Liion for stable M3-Ti3C2T2-Li with Liion adsorbed on Ti3C2T2 surface
Ti3C2T2-Li | Eab/eV | Δq/e | Δh/nm |
---|---|---|---|
M3-Ti3C2F2-LiT2 | -1.21 | 0.61 | 0.021 |
M3-Ti3C2Cl2-LiT1 | -0.72 | 0.40 | 0.026 |
M3-Ti3C2Br2-LiT1 | -0.41 | 0.33 | 0.028 |
图4 (a) Ti3C2F2、(b) Ti3C2Cl2和(c) Ti3C2Br2上锂离子迁移路径示意图, 及锂离子在(d) Ti3C2F2、(e) Ti3C2Cl2和(f) Ti3C2Br2表面迁移的过渡态和相应的能量分布
Fig. 4 Schematic diagram of Li-ion migration path on (a) Ti3C2F2, (b) Ti3C2Cl2 and (c) Ti3C2Br2, and corresponding energy profiles and transition states of Li-ion migration on (d) Ti3C2F2, (e) Ti3C2Cl2 and (f) Ti3C2Br2 surfaces Colorful figures are available on website
图5 吸附多层锂离子的 (a) Ti3C2F2、(b) Ti3C2Cl2和(c) Ti3C2Br2的俯视图和主视图
Fig. 5 Top and side views of (a) Ti3C2F2, (b) Ti3C2Cl2 and (c) Ti3C2Br2 with the adsorption of multi-layer Liions Blue, black, nattier blue, and purple balls represent Ti, C, T, and Li atoms, respectively. 1 Å=0.1 nm Colorful figures are available on website
Ti3C2T2 | OCV1st /V | OCV2nd /V | OCV3rd /V | E2nd /eV | E3rd /eV | CM /(mA h·g-1) |
---|---|---|---|---|---|---|
Ti3C2F2 | 0.57 | 0.61 | - | -5.25 | - | 521.41 |
Ti3C2Cl2 | 0.37 | 0.53 | 0.54 | -5.48 | -4.51 | 674.21 |
Ti3C2Br2 | 0.34 | 0.51 | 0.52 | -5.39 | -4.45 | 491.14 |
表4 M3-Ti3C2T2吸附多层锂离子时平均开路电压OCV、双层锂离子时吸附能(E2nd)和三层锂离子时吸附能(E3rd), 以及最大理论存储容量(CM)
Table 4 Average open circuit voltage (OCV), adsorption energies of the Liions on the double (E2nd) and triple (E3rd) layers, and the maximum theoretical capacity (CM) of the multi-layer Li-ion adsorption of M3-Ti3C2T2
Ti3C2T2 | OCV1st /V | OCV2nd /V | OCV3rd /V | E2nd /eV | E3rd /eV | CM /(mA h·g-1) |
---|---|---|---|---|---|---|
Ti3C2F2 | 0.57 | 0.61 | - | -5.25 | - | 521.41 |
Ti3C2Cl2 | 0.37 | 0.53 | 0.54 | -5.48 | -4.51 | 674.21 |
Ti3C2Br2 | 0.34 | 0.51 | 0.52 | -5.39 | -4.45 | 491.14 |
图7 双层Ti3C2Cl2的三种堆垛结构的俯视图和主视图
Fig. 7 Top and side views of three feasible stacking configurations of double Ti3C2Cl2. Blue, black, green, and purple balls represent Ti, C, T, and Li atoms, respectively; Colorful figures are available on website
图8 D33-Ti3C2Cl2中(a)锂离子扩散路径示意图、(b)过渡态构型和相应的能量分布, 以及(c)锂离子迁移的初始态和过渡态的原子结构和层间距离
Fig. 8 (a) Schematic illustration of the diffusion path of Liion, (b) corresponding energy profiles and configurations of transition states, (c) atomic structures and interlayer distances at initial and transition states of D33-Ti3C2Cl2 during interlayer Li-ion migration. Blue, black and green balls represent Ti, C and T atoms, respectively. 1 Å =0.1 nm; Colorful figures are available on website
[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669.
DOI URL |
[2] |
ZHANG F, WAN L, CHEN J, et al. Crossed carbon skeleton enhances the electrochemical performance of porous silicon nanowires for lithium ion battery anode. Electrochimica Acta, 2018, 280: 86-93.
DOI URL |
[3] |
JIN Y, ZHU B, LU Z, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Advanced Energy Materials, 2017, 7(23): 1700715.
DOI URL |
[4] | KOZMENKOVA A Y, TIMOFEEVA V A, MANKAEV B N, et al. The redox properties of germylenes stabilized by N-donor ligands. European Journal of Inorganic Chemistry, 2021, 27: 2755-2763. |
[5] |
ZHANG K L, CHEN F, PAN H, et al. Study on the effect of transition metal sulfide in lithium-sulfur battery. Inorganic Chemistry Frontiers, 2019, 6(2): 477-481.
DOI URL |
[6] |
ZHAO J, ZHANG Y, WANG Y, et al. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. Journal of Energy Chemistry, 2018, 27(6): 1536-1554.
DOI URL |
[7] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248-4253.
DOI URL |
[8] |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017, 2(2): 16098.
DOI URL |
[9] |
NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 2014, 26(7): 992-1005.
DOI URL |
[10] |
LI Z, WANG L, SUN D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Materials Science and Engineering: B, 2015, 191: 33-40.
DOI URL |
[11] |
HANTANASIRISAKUL K, ZHAO M Q, URBANKOWSKI P, et al. Fabrication of Ti3C2 MXene transparent thin films with tunable optoelectronic properties. Advanced Electronic Materials, 2016, 2(6): 1600050.
DOI URL |
[12] |
ZHANG C F, ANASORI B, SERAL-ASCASO A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Advanced Materials, 2017, 29(36): 1702678.
DOI URL |
[13] |
LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 2014, 111(47): 16676-16681.
DOI URL |
[14] |
HU M, HU T, LI Z, et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano, 2018, 12(4): 3578-3586.
DOI URL |
[15] | WEI S Q, WANG C D, ZHANG P J, et al. Mn2+ intercalated V2C MXene for enhanced sodium ion battery. Journal of Inorganic Materials, 2020, 35(1): 139-144. |
[16] | MA B, LI M, CHENG L, et al. Enzyme-MXene nanosheets: fabrication and application in electrochemical detection of H2O2. Journal of Inorganic Materials, 2020, 35(1): 131-138. |
[17] | MOSTAFA G, YADOLLAH Y, KOBRA Z M. Accordion-like Ti3C2Tx MXene nanosheets as a high-performance solid phase microextraction adsorbent for determination of polycyclic aromatic hydrocarbons using GC-MS. Microchimica Acta, 2020, 187(10): 2145-2148. |
[18] | LI T, HUANG L, YAN X, et al. Ti3C2Tx/wood carbon as high- areal-capacity electrodes for supercapacitors. Journal of Inorganic Materials, 2020, 35(1): 126-130. |
[19] | MA Y, LIU Y, YU C, et al. Monolayer Ti3C2Tx nanosheets with different lateral dimension: preparation and electrochemical property. Journal of Inorganic Materials, 2020, 35(1): 93-98. |
[20] |
TANG Q, ZHOU Z, SHEN P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. Journal of the American Chemical Society, 2012, 134(40): 16909-16916.
DOI URL |
[21] |
LIANG M, ZHI L. Graphene-based electrode materials for rechargeable lithium. Journal of Materials Chemistry, 2009, 19(33): 5871-5878.
DOI URL |
[22] |
ZHANG X, ZHANG Z, ZHOU Z. MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 2017, 27(1): 73-85.
DOI URL |
[23] |
MASHTALIR O, LULATSKAYA M R, ZHAO M Q, et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Advanced Materials, 2015, 27(23): 3501-3506.
DOI URL |
[24] |
LI D, CHEN X, XIANG P, et al. Chalcogenated-Ti3C2X2 MXene (X=O, S, Se and Te) as a high-performance anode material for Li-ion batteries. Applied Surface Science, 2020, 501(31): 144221.
DOI URL |
[25] |
MENG Q, MA J, ZHANG Y, et al. The S-functionalized Ti3C2 MXene as a high capacity electrode material for Na-ion batteries: a DFT study. Nanoscale, 2018, 10(7): 3385-3392.
DOI URL |
[26] |
LI R, ZHAO P, QIN X, et al. First-principles study of heterostructures of MXene and nitrogen-doped graphene as anode materials for Li-ion batteries. Surfaces and Interfaces, 2020, 21: 100788.
DOI URL |
[27] |
DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 1990, 92(1): 508-517.
DOI URL |
[28] |
DELLEY B. From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 2000, 113(18): 7756-7764.
DOI URL |
[29] |
DZYALOSHINSKII I E, LIFSHITZ E M, PITAEVSKII L P. General theory of van Der Waals’ forces. Soviet Physics Uspekhi, 1961, 4(2): 153-176.
DOI URL |
[30] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865.
DOI URL |
[31] |
KOELLING D D, HARMON B N. A technique for relativistic spin-polarised calculations. Journal of Physics C: Solid State Physics, 1977, 10: 3107.
DOI URL |
[32] |
HENDRIK J M, JAMES D P. Special points for Brillouin-zone integrations. Physical Review B, 1976, 13(12): 5188-5192.
DOI URL |
[33] | LI Y, WU D, ZHOU Z, et al. Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: a computational study. Physical Review Letters, 2012, 3(16): 2221-2227. |
[34] |
ZHANG H, XIN X, LIU H, et al. Enhancing lithium adsorption and diffusion toward extraordinary lithium storage capability of freestanding Ti3C2Tx MXene. The Journal of Physical Chemistry C, 2019, 123(5): 2792-2800.
DOI URL |
[35] |
HU T, WANG J, ZHANG H, et al. Vibrational properties of Ti3C2 and Ti3C2T2 (T= O, F, OH) monosheets by first-principles calculations: a comparative study. Physical Chemistry Chemical Physics, 2015, 17: 9997-10003.
DOI URL |
[36] |
LI L. Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): the effect of Mo substitution. Computational Materials Science, 2016, 124: 8-14.
DOI URL |
[37] |
ZHAO D, CLITES M, YING G, et al. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chemical Communications, 2018, 54(36): 4533-4536.
DOI URL |
[38] |
ZHANG K, YING G, LIU L, et al. Three-dimensional porous Ti3C2Tx-NiO composite electrodes with enhanced electro-chemical performance for supercapacitors. Materials, 2019, 12(1): 188.
DOI URL |
[39] |
FU Z, ZHANG Q, LEGUT D, et al. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Physical Review B, 2016, 94(10): 104103.
DOI URL |
[40] |
NAKADA K, ISHII A. Migration of adatom adsorption on graphene using DFT calculation. Solid State Communications, 2011, 151(1): 13-16.
DOI URL |
[41] |
XU B, LU H S, LIU B, et al. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: insight from first-principles calculations. Chinese Physics B, 2016, 25(6): 067103.
DOI URL |
[42] |
TRITSARIS G A, KAXIRAS E, MENG S, et al. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Letters, 2013, 13(5): 2258-2263.
DOI URL |
[43] |
JING Y, ZHOU Z, CABRERA C R, et al. Metallic VS2 monolayer: a promising 2D anode material for lithium ion batteries. The Journal of Physical Chemistry C, 2013, 117(48): 25409-25413.
DOI URL |
[44] |
XIE Y, DALL’AGNESE Y, NAGUIB M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 2014, 8(9): 9606-9615.
DOI URL |
[45] |
XIE Y, NAGUIB M, MOCHALIN V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. Journal of the American Chemical Society, 2014, 136(17): 6385-6394.
DOI URL |
[46] |
EAMES C, ISLAM M S. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. Journal of the American Chemical Society, 2014, 136: 16270-16276.
DOI URL |
[47] |
KOUDRIACHOVA M V, HARRISON N M, DE LEEUW S W. Open circuit voltage profile for Li-intercalation in rutile and anatase from first principles. Solid State Ionics, 2002, 152/153: 189-194.
DOI URL |
[48] |
HU J, XU B, OUYANG C, et al. Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first-principles calculations. RSC Advances, 2016, 6: 27467-27474.
DOI URL |
[49] |
SUN Q, DAI Y, MA Y, et al. Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries. The Journal of Physical Chemistry Letters, 2016, 7(6): 937-943.
DOI URL |
[1] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[2] | 徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178. |
[3] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. |
[4] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[5] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[6] | 吴晓维, 张涵, 曾彪, 明辰, 孙宜阳. 杂化泛函HSE和PBE0计算CsPbI3缺陷性质的比较研究[J]. 无机材料学报, 2023, 38(9): 1110-1116. |
[7] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[8] | 白志强, 赵璐, 白云峰, 冯锋. MXenes的制备、性质及其在肿瘤诊疗中的研究进展[J]. 无机材料学报, 2022, 37(4): 361-375. |
[9] | 席文, 李海波. TiO2/Ti3C2Tx复合材料的制备及其杂化电容脱盐特性的研究[J]. 无机材料学报, 2021, 36(3): 283-291. |
[10] | 赵宇鹏,贺勇,张敏,史俊杰. 新型二维Zr2CO2/InS异质结可见光催化产氢性能的第一性原理研究[J]. 无机材料学报, 2020, 35(9): 993-998. |
[11] | 李志锋, 谭杰, 杨晓飞, 蔺祖弘, 郇正来, 张婷婷. 高暴露(001)面BiOBr/Ti3C2复合光催化剂的制备及其可见光催化性能[J]. 无机材料学报, 2020, 35(11): 1247-1254. |
[12] | 杨以娜, 王冉冉, 孙静. MXenes在柔性力敏传感器中的应用研究进展[J]. 无机材料学报, 2020, 35(1): 8-18. |
[13] | 陈雷雷, 邓子旋, 李勉, 李朋, 常可可, 黄峰, 都时禹, 黄庆. 新型MAX相的相图热力学研究[J]. 无机材料学报, 2020, 35(1): 35-40. |
[14] | 李亚辉, 张建峰, 曹惠杨, 张欣, 江莞. 二维碳化钛/碳纳米管负载铂钌粒子的制备及电催化性能研究[J]. 无机材料学报, 2020, 35(1): 79-85. |
[15] | 马亚楠, 刘宇飞, 余晨旭, 张传坤, 罗时军, 高义华. 不同横向尺寸单层Ti3C2Tx纳米片的制备及其电化学性能研究[J]. 无机材料学报, 2020, 35(1): 93-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||